These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 32134569)
1. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. Tamjid E; Bohlouli M; Mohammadi S; Alipour H; Nikkhah M J Biomed Mater Res A; 2020 Jun; 108(6):1426-1438. PubMed ID: 32134569 [TBL] [Abstract][Full Text] [Related]
2. 3D-printed porous titanium rods equipped with vancomycin-loaded hydrogels and polycaprolactone membranes for intelligent antibacterial drug release. Ma Z; Zhao Y; Xu Z; Zhang Y; Han Y; Jiang H; Sun P; Feng W Sci Rep; 2024 Sep; 14(1):21749. PubMed ID: 39294268 [TBL] [Abstract][Full Text] [Related]
3. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement. Ahmed SM; Ahmed H; Tian C; Tu Q; Guo Y; Wang J Colloids Surf B Biointerfaces; 2016 Jul; 143():371-381. PubMed ID: 27022878 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480 [TBL] [Abstract][Full Text] [Related]
5. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Dayaghi E; Bakhsheshi-Rad HR; Hamzah E; Akhavan-Farid A; Ismail AF; Aziz M; Abdolahi E Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():53-65. PubMed ID: 31147024 [TBL] [Abstract][Full Text] [Related]
6. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
7. Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Ulker Turan C; Metin A; Guvenilir Y Eur J Pharm Biopharm; 2021 May; 162():59-69. PubMed ID: 33727142 [TBL] [Abstract][Full Text] [Related]
8. Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering. Ezhilarasu H; Ramalingam R; Dhand C; Lakshminarayanan R; Sadiq A; Gandhimathi C; Ramakrishna S; Bay BH; Venugopal JR; Srinivasan DK Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31635374 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Kim HW; Knowles JC; Kim HE Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Fereshteh Z; Fathi M; Bagri A; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():613-622. PubMed ID: 27524061 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
14. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Bai J; Wang H; Gao W; Liang F; Wang Z; Zhou Y; Lan X; Chen X; Cai N; Huang W; Tang Y Int J Pharm; 2020 Feb; 576():118941. PubMed ID: 31881261 [TBL] [Abstract][Full Text] [Related]
15. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Qi R; Guo R; Zheng F; Liu H; Yu J; Shi X Colloids Surf B Biointerfaces; 2013 Oct; 110():148-55. PubMed ID: 23711785 [TBL] [Abstract][Full Text] [Related]
16. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. Mughal A; Gillani SMH; Ahmed S; Fatima D; Hussain R; Manzur J; Nawaz MH; Minhas B; Shoaib Butt M; Bodaghi M; Ur Rehman MA J Mech Behav Biomed Mater; 2024 Aug; 156():106581. PubMed ID: 38776740 [TBL] [Abstract][Full Text] [Related]
17. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability. Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120 [TBL] [Abstract][Full Text] [Related]
18. Synergistic antibacterial effect of tetracycline hydrochloride loaded functionalized graphene oxide nanostructures. Jiang L; Su C; Ye S; Wu J; Zhu Z; Wen Y; Zhang R; Shao W Nanotechnology; 2018 Dec; 29(50):505102. PubMed ID: 30251959 [TBL] [Abstract][Full Text] [Related]