These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32134646)

  • 61. Adaptive configuring of radial basis function network by hybrid particle swarm algorithm for QSAR studies of organic compounds.
    Zhou YP; Jiang JH; Lin WQ; Zou HY; Wu HL; Shen GL; Yu RQ
    J Chem Inf Model; 2006; 46(6):2494-501. PubMed ID: 17125190
    [TBL] [Abstract][Full Text] [Related]  

  • 62. GuacaMol: Benchmarking Models for de Novo Molecular Design.
    Brown N; Fiscato M; Segler MHS; Vaucher AC
    J Chem Inf Model; 2019 Mar; 59(3):1096-1108. PubMed ID: 30887799
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.
    Ghose AK; Viswanadhan VN; Wendoloski JJ
    J Comb Chem; 1999 Jan; 1(1):55-68. PubMed ID: 10746014
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flow chemistry as a tool to access novel chemical space for drug discovery.
    López E; Linares ML; Alcázar J
    Future Med Chem; 2020 Sep; 12(17):1547-1563. PubMed ID: 32819155
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Global Assessment of Substituents on the Basis of Analogue Series.
    Takeuchi K; Kunimoto R; Bajorath J
    J Med Chem; 2020 Dec; 63(23):15013-15020. PubMed ID: 33253557
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis.
    Struble TJ; Alvarez JC; Brown SP; Chytil M; Cisar J; DesJarlais RL; Engkvist O; Frank SA; Greve DR; Griffin DJ; Hou X; Johannes JW; Kreatsoulas C; Lahue B; Mathea M; Mogk G; Nicolaou CA; Palmer AD; Price DJ; Robinson RI; Salentin S; Xing L; Jaakkola T; Green WH; Barzilay R; Coley CW; Jensen KF
    J Med Chem; 2020 Aug; 63(16):8667-8682. PubMed ID: 32243158
    [TBL] [Abstract][Full Text] [Related]  

  • 67. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P; Zou J; Yu J; Shi S
    J Mol Model; 2023 Mar; 29(4):121. PubMed ID: 36991180
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deep generative models for ligand-based de novo design applied to multi-parametric optimization.
    Perron Q; Mirguet O; Tajmouati H; Skiredj A; Rojas A; Gohier A; Ducrot P; Bourguignon MP; Sansilvestri-Morel P; Do Huu N; Gellibert F; Gaston-Mathé Y
    J Comput Chem; 2022 Apr; 43(10):692-703. PubMed ID: 35218219
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Method for effective virtual screening and scaffold-hopping in chemical compounds.
    Wale N; Karypis G; Watson IA
    Comput Syst Bioinformatics Conf; 2007; 6():403-14. PubMed ID: 17951843
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Improving Chemical Autoencoder Latent Space and Molecular
    Bjerrum EJ; Sattarov B
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380783
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism.
    Xiong Z; Wang D; Liu X; Zhong F; Wan X; Li X; Li Z; Luo X; Chen K; Jiang H; Zheng M
    J Med Chem; 2020 Aug; 63(16):8749-8760. PubMed ID: 31408336
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-throughput ligand screening via preclustering and evolved neural networks.
    Hecht D; Fogel G
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):476-484. PubMed ID: 17666767
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Designing active template molecules by combining computational de novo design and human chemist's expertise.
    Lameijer EW; Tromp RA; Spanjersberg RF; Brussee J; Ijzerman AP
    J Med Chem; 2007 Apr; 50(8):1925-32. PubMed ID: 17367122
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Memory-assisted reinforcement learning for diverse molecular de novo design.
    Blaschke T; Engkvist O; Bajorath J; Chen H
    J Cheminform; 2020 Nov; 12(1):68. PubMed ID: 33292554
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors.
    Li X; Xu Y; Yao H; Lin K
    J Cheminform; 2020 Jun; 12(1):42. PubMed ID: 33430983
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods.
    Sauer S; Matter H; Hessler G; Grebner C
    Front Chem; 2022; 10():1012507. PubMed ID: 36339033
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SMILES-based deep generative scaffold decorator for de-novo drug design.
    Arús-Pous J; Patronov A; Bjerrum EJ; Tyrchan C; Reymond JL; Chen H; Engkvist O
    J Cheminform; 2020 May; 12(1):38. PubMed ID: 33431013
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries.
    Amabilino S; Pogány P; Pickett SD; Green DVS
    J Chem Inf Model; 2020 Dec; 60(12):5699-5713. PubMed ID: 32659085
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular shape and medicinal chemistry: a perspective.
    Nicholls A; McGaughey GB; Sheridan RP; Good AC; Warren G; Mathieu M; Muchmore SW; Brown SP; Grant JA; Haigh JA; Nevins N; Jain AN; Kelley B
    J Med Chem; 2010 May; 53(10):3862-86. PubMed ID: 20158188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.