These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32134646)

  • 81. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds.
    Korshunova M; Huang N; Capuzzi S; Radchenko DS; Savych O; Moroz YS; Wells CI; Willson TM; Tropsha A; Isayev O
    Commun Chem; 2022 Oct; 5(1):129. PubMed ID: 36697952
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence*.
    Moret M; Helmstädter M; Grisoni F; Schneider G; Merk D
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19477-19482. PubMed ID: 34165856
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An Artificial Intelligence Approach to Proactively Inspire Drug Discovery with Recommendations.
    Rohall SL; Auch L; Gable J; Gora J; Jansen J; Lu Y; Martin E; Pancost-Heidebrecht M; Shirley B; Stiefl N; Lindvall M
    J Med Chem; 2020 Aug; 63(16):8824-8834. PubMed ID: 32101427
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Affinity fingerprinting.
    Kauvar LM
    Biotechnology (N Y); 1995 Sep; 13(9):965-6. PubMed ID: 9678954
    [No Abstract]   [Full Text] [Related]  

  • 85. Structure-based
    Li Y; Pei J; Lai L
    Chem Sci; 2021 Oct; 12(41):13664-13675. PubMed ID: 34760151
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Application of Generative Autoencoder in De Novo Molecular Design.
    Blaschke T; Olivecrona M; Engkvist O; Bajorath J; Chen H
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29235269
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets.
    Wenzel J; Matter H; Schmidt F
    J Chem Inf Model; 2019 Mar; 59(3):1253-1268. PubMed ID: 30615828
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A simple method to improve the odds in finding 'lead-like' compounds from chemical libraries.
    Horio K; Muta H; Goto J; Hirayama N
    Chem Pharm Bull (Tokyo); 2007 Jul; 55(7):980-4. PubMed ID: 17603185
    [TBL] [Abstract][Full Text] [Related]  

  • 89. VISAR: an interactive tool for dissecting chemical features learned by deep neural network QSAR models.
    Ding Q; Hou S; Zu S; Zhang Y; Li S
    Bioinformatics; 2020 Jun; 36(11):3610-3612. PubMed ID: 32170933
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Actively Searching: Inverse Design of Novel Molecules with Simultaneously Optimized Properties.
    Iovanac NC; MacKnight R; Savoie BM
    J Phys Chem A; 2022 Jan; 126(2):333-340. PubMed ID: 34985908
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.
    Gao JS; Tong XP; Chang YQ; He YX; Mei YD; Tan PH; Guo JL; Liao GC; Xiao GK; Chen WM; Zhou SF; Sun PH
    Drug Des Devel Ther; 2015; 9():1743-59. PubMed ID: 25848211
    [TBL] [Abstract][Full Text] [Related]  

  • 93. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Structure-based drug design strategies in medicinal chemistry.
    Andricopulo AD; Salum LB; Abraham DJ
    Curr Top Med Chem; 2009; 9(9):771-90. PubMed ID: 19754394
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Learning from Multiple Classifier Systems: Perspectives for Improving Decision Making of QSAR Models in Medicinal Chemistry.
    Pham-The H; Nam NH; Nga DV; Hai DT; Dieguez-Santana K; Marrero-Poncee Y; Castillo-Garit JA; Casanola-Martin GM; Le-Thi-Thu H
    Curr Top Med Chem; 2018 Feb; 17(30):3269-3288. PubMed ID: 29231145
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks.
    Givehchi A; Schneider G
    J Mol Model; 2004 Jun; 10(3):204-11. PubMed ID: 15067522
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Random molecular fragment methods in computational medicinal chemistry.
    Lounkine E; Batista J; Bajorath J
    Curr Med Chem; 2008; 15(21):2108-21. PubMed ID: 18781938
    [TBL] [Abstract][Full Text] [Related]  

  • 98. MIANN models in medicinal, physical and organic chemistry.
    González-Díaz H; Arrasate S; Sotomayor N; Lete E; Munteanu CR; Pazos A; Besada-Porto L; Ruso JM
    Curr Top Med Chem; 2013; 13(5):619-41. PubMed ID: 23548024
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Language models can learn complex molecular distributions.
    Flam-Shepherd D; Zhu K; Aspuru-Guzik A
    Nat Commun; 2022 Jun; 13(1):3293. PubMed ID: 35672310
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Fine-tuning of a generative neural network for designing multi-target compounds.
    Blaschke T; Bajorath J
    J Comput Aided Mol Des; 2022 May; 36(5):363-371. PubMed ID: 34046745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.