These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32134670)

  • 21. Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy.
    Trivedi RP; Lee T; Bertness KA; Smalyukh II
    Opt Express; 2010 Dec; 18(26):27658-69. PubMed ID: 21197040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation.
    Varney MC; Jenness NJ; Smalyukh II
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022505. PubMed ID: 25353487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volumetric imaging of holographic optical traps.
    Roichman Y; Cholis I; Grier DG
    Opt Express; 2006 Oct; 14(22):10907-12. PubMed ID: 19529503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Independent polarisation control of multiple optical traps.
    Preece D; Keen S; Botvinick E; Bowman R; Padgett M; Leach J
    Opt Express; 2008 Sep; 16(20):15897-902. PubMed ID: 18825226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Line optical tweezers as controllable micromachines: techniques and emerging trends.
    Shen Y; Weitz DA; Forde NR; Shayegan M
    Soft Matter; 2022 Jul; 18(29):5359-5365. PubMed ID: 35819100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creating tunable lateral optical forces through multipolar interplay in single nanowires.
    Nan F; Rodríguez-Fortuño FJ; Yan S; Kingsley-Smith JJ; Ng J; Yao B; Yan Z; Xu X
    Nat Commun; 2023 Oct; 14(1):6361. PubMed ID: 37821466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning Nanoparticle Electrodynamics by an Optical-Matter-Based Laser Beam Shaper.
    Nan F; Yan Z
    Nano Lett; 2019 May; 19(5):3353-3358. PubMed ID: 31013096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-transition-like properties of double-beam optical tweezers.
    Stilgoe AB; Heckenberg NR; Nieminen TA; Rubinsztein-Dunlop H
    Phys Rev Lett; 2011 Dec; 107(24):248101. PubMed ID: 22243026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap.
    Xie C; Dinno MA; Li YQ
    Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creating stable trapping force and switchable optical torque with tunable phase of light.
    Nan F; Li X; Zhang S; Ng J; Yan Z
    Sci Adv; 2022 Nov; 8(46):eadd6664. PubMed ID: 36399578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully dynamic multiple-beam optical tweezers.
    Eriksen R; Daria V; Gluckstad J
    Opt Express; 2002 Jul; 10(14):597-602. PubMed ID: 19436404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theory of holographic optical trapping.
    Sun B; Roichman Y; Grier DG
    Opt Express; 2008 Sep; 16(20):15765-76. PubMed ID: 18825216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation.
    Kudo T; Wang SF; Yuyama K; Masuhara H
    Nano Lett; 2016 May; 16(5):3058-62. PubMed ID: 27104966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Malus-metasurface-assisted polarization multiplexing.
    Deng L; Deng J; Guan Z; Tao J; Chen Y; Yang Y; Zhang D; Tang J; Li Z; Li Z; Yu S; Zheng G; Xu H; Qiu CW; Zhang S
    Light Sci Appl; 2020; 9():101. PubMed ID: 32566171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum.
    Yevick A; Evans DJ; Grier DG
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly controllable optical tweezers using dynamic electronic holograms.
    Yamamoto J; Iwai T
    Curr Pharm Biotechnol; 2012 Nov; 13(14):2655-62. PubMed ID: 22039817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
    Ling L; Guo HL; Zhong XL; Huang L; Li JF; Gan L; Li ZY
    Nanotechnology; 2012 Jun; 23(21):215302. PubMed ID: 22551556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization.
    Mohanty S
    Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.