These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32134670)

  • 61. Dynamic formation of optically trapped microstructure arrays for biosensor applications.
    Daria VR; Rodrigo PJ; Glückstad J
    Biosens Bioelectron; 2004 Jun; 19(11):1439-44. PubMed ID: 15093215
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping.
    Sinclair G; Leach J; Jordan P; Gibson G; Yao E; Laczik Z; Padgett M; Courtial J
    Opt Express; 2004 Apr; 12(8):1665-70. PubMed ID: 19474992
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds.
    Melzer JE; McLeod E
    ACS Nano; 2018 Mar; 12(3):2440-2447. PubMed ID: 29400940
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars.
    Applegate R; Squier J; Vestad T; Oakey J; Marr D
    Opt Express; 2004 Sep; 12(19):4390-8. PubMed ID: 19483988
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interference and crosstalk in double optical tweezers using a single laser source.
    Mangeol P; Bockelmann U
    Rev Sci Instrum; 2008 Aug; 79(8):083103. PubMed ID: 19044332
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Positional stability of holographic optical traps.
    Farré A; Shayegan M; López-Quesada C; Blab GA; Montes-Usategui M; Forde NR; Martín-Badosa E
    Opt Express; 2011 Oct; 19(22):21370-84. PubMed ID: 22108987
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mobile nanotweezers for active colloidal manipulation.
    Ghosh S; Ghosh A
    Sci Robot; 2018 Jan; 3(14):. PubMed ID: 33141698
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Simulation and Experiment of the Trapping Trajectory for Janus Particles in Linearly Polarized Optical Traps.
    Gao X; Zhai C; Lin Z; Chen Y; Li H; Hu C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457912
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
    Roxworthy BJ; Ko KD; Kumar A; Fung KH; Chow EK; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2012 Feb; 12(2):796-801. PubMed ID: 22208881
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient optical trapping with cylindrical vector beams.
    Moradi H; Shahabadi V; Madadi E; Karimi E; Hajizadeh F
    Opt Express; 2019 Mar; 27(5):7266-7276. PubMed ID: 30876293
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Copper ion-exchanged channel waveguides optimization for optical trapping.
    Reshak AH; Khor KN; Shahimin MM; Murad SA
    Prog Biophys Mol Biol; 2013 Aug; 112(3):118-23. PubMed ID: 23726859
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Toward optical-tweezers-based force microscopy for airborne microparticles.
    Power RM; Burnham DR; Reid JP
    Appl Opt; 2014 Dec; 53(36):8522-34. PubMed ID: 25608202
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Micro-Dumbbells-A Versatile Tool for Optical Tweezers.
    Lamperska W; Drobczyński S; Nawrot M; Wasylczyk P; Masajada J
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424210
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
    Miao X; Wilson BK; Pun SH; Lin LY
    Opt Express; 2008 Sep; 16(18):13517-25. PubMed ID: 18772960
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.
    Tong L; Miljković VD; Käll M
    Nano Lett; 2010 Jan; 10(1):268-73. PubMed ID: 20030391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.