These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32134673)

  • 1. Unsaturation and Polar Head Effect on Gelation, Bioactive Release, and Cr/Cu Removal Ability of Glycolipids.
    Sekhar KPC; Swain DK; Holey SA; Bojja S; Nayak RR
    Langmuir; 2020 Mar; 36(12):3080-3088. PubMed ID: 32134673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Glycolipid-Based Hydro-/Organogels with Enzymatic Bioactive Release Ability by Tuning the Chain Length and Headgroup Size.
    Holey SA; Sekhar KPC; Swain DK; Bojja S; Nayak RR
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1103-1114. PubMed ID: 35196000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonionic Glycolipids for Chromium Flotation- and Emulsion (W/O and O/W)-Based Bioactive Release.
    Sekhar KPC; Nayak RR
    Langmuir; 2018 Nov; 34(47):14347-14357. PubMed ID: 30392368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Glycolipid Hydrophobic Chain Length and Headgroup Size on Self-Assembly and Hydrophobic Guest Release.
    Sekhar KPC; Adicherla H; Nayak RR
    Langmuir; 2018 Jul; 34(30):8875-8886. PubMed ID: 29983075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crops: a green approach toward self-assembled soft materials.
    Vemula PK; John G
    Acc Chem Res; 2008 Jun; 41(6):769-82. PubMed ID: 18507403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphic transient glycolipid assemblies with tunable lifespan and cargo release.
    P C Sekhar K; Zhao K; Gao Z; Ma X; Geng H; Song A; Cui J
    J Colloid Interface Sci; 2022 Mar; 610():1067-1076. PubMed ID: 34876263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of synthetic glycolipid/water systems.
    Hato M; Minamikawa H; Tamada K; Baba T; Tanabe Y
    Adv Colloid Interface Sci; 1999 Apr; 80(3):233-70. PubMed ID: 10696261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation and release of curcumin using an intact milk fat globule delivery system.
    Alshehab M; Nitin N
    Food Funct; 2019 Nov; 10(11):7121-7130. PubMed ID: 31531433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry Thermotropic Glycolipid Self-Assembly:A Review.
    Hashim R; Zahid NI; Velayutham TS; Aripin NFK; Ogawa S; Sugimura A
    J Oleo Sci; 2018 Jun; 67(6):651-668. PubMed ID: 29760332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients.
    Mao L; Lu Y; Cui M; Miao S; Gao Y
    Crit Rev Food Sci Nutr; 2020; 60(10):1651-1666. PubMed ID: 30892058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of anhydrous lamellar structures of synthetic glycolipids: effects of chain branching and disaccharide headgroup.
    Achari VM; Nguan HS; Heidelberg T; Bryce RA; Hashim R
    J Phys Chem B; 2012 Sep; 116(38):11626-34. PubMed ID: 22967067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolipid headgroup replacement: a new approach for the analysis of specific functions of glycolipids in vivo.
    Warnecke D; Heinz E
    Eur J Cell Biol; 2010 Jan; 89(1):53-61. PubMed ID: 19939496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; RĂ© MI
    Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.
    Clemente MJ; Fitremann J; Mauzac M; Serrano JL; Oriol L
    Langmuir; 2011 Dec; 27(24):15236-47. PubMed ID: 22124333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites.
    Dutta S; Kar T; Mandal D; Das PK
    Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
    Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB
    Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and development of soft nanomaterials from biobased amphiphiles.
    John G; Vemula PK
    Soft Matter; 2006 Oct; 2(11):909-914. PubMed ID: 32680178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal.
    Kar T; Debnath S; Das D; Shome A; Das PK
    Langmuir; 2009 Aug; 25(15):8639-48. PubMed ID: 19338331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.
    McClements DJ
    Adv Colloid Interface Sci; 2012 Jun; 174():1-30. PubMed ID: 22475330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro digestion behavior of water-in-oil-in-water emulsions with gelled oil-water inner phases.
    Andrade J; Wright AJ; Corredig M
    Food Res Int; 2018 Mar; 105():41-51. PubMed ID: 29433230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.