BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32134915)

  • 21. Bacterial Genomic Data Analysis in the Next-Generation Sequencing Era.
    Orsini M; Cuccuru G; Uva P; Fotia G
    Methods Mol Biol; 2016; 1415():407-22. PubMed ID: 27115645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. preAssemble: a tool for automatic sequencer trace data processing.
    Adzhubei AA; Laerdahl JK; Vlasova AV
    BMC Bioinformatics; 2006 Jan; 7():22. PubMed ID: 16417643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NanoSPC: a scalable, portable, cloud compatible viral nanopore metagenomic data processing pipeline.
    Xu Y; Yang-Turner F; Volk D; Crook D
    Nucleic Acids Res; 2020 Jul; 48(W1):W366-W371. PubMed ID: 32442274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene calling and bacterial genome annotation with BG7.
    Tobes R; Pareja-Tobes P; Manrique M; Pareja-Tobes E; Kovach E; Alekhin A; Pareja E
    Methods Mol Biol; 2015; 1231():177-89. PubMed ID: 25343866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaffolding and validation of bacterial genome assemblies using optical restriction maps.
    Nagarajan N; Read TD; Pop M
    Bioinformatics; 2008 May; 24(10):1229-35. PubMed ID: 18356192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational genomics pipeline for prokaryotic sequencing projects.
    Kislyuk AO; Katz LS; Agrawal S; Hagen MS; Conley AB; Jayaraman P; Nelakuditi V; Humphrey JC; Sammons SA; Govil D; Mair RD; Tatti KM; Tondella ML; Harcourt BH; Mayer LW; Jordan IK
    Bioinformatics; 2010 Aug; 26(15):1819-26. PubMed ID: 20519285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.
    Gardner SN; Hall BG
    PLoS One; 2013; 8(12):e81760. PubMed ID: 24349125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using KBase to Assemble and Annotate Prokaryotic Genomes.
    Allen B; Drake M; Harris N; Sullivan T
    Curr Protoc Microbiol; 2017 Aug; 46():1E.13.1-1E.13.18. PubMed ID: 28800158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis.
    Schbath S; Martin V; Zytnicki M; Fayolle J; Loux V; Gibrat JF
    J Comput Biol; 2012 Jun; 19(6):796-813. PubMed ID: 22506536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods for assembling reads and producing contigs.
    Orlandini V; Fondi M; Fani R
    Methods Mol Biol; 2015; 1231():151-61. PubMed ID: 25343864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TORMES: an automated pipeline for whole bacterial genome analysis.
    Quijada NM; Rodríguez-Lázaro D; Eiros JM; Hernández M
    Bioinformatics; 2019 Nov; 35(21):4207-4212. PubMed ID: 30957837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. INSaFLU: an automated open web-based bioinformatics suite "from-reads" for influenza whole-genome-sequencing-based surveillance.
    Borges V; Pinheiro M; Pechirra P; Guiomar R; Gomes JP
    Genome Med; 2018 Jun; 10(1):46. PubMed ID: 29954441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
    Thakur S; Guttman DS
    BMC Bioinformatics; 2016 Jun; 17(1):260. PubMed ID: 27363390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CloudMap: a cloud-based pipeline for analysis of mutant genome sequences.
    Minevich G; Park DS; Blankenberg D; Poole RJ; Hobert O
    Genetics; 2012 Dec; 192(4):1249-69. PubMed ID: 23051646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.
    Rowe W; Baker KS; Verner-Jeffreys D; Baker-Austin C; Ryan JJ; Maskell D; Pearce G
    PLoS One; 2015; 10(7):e0133492. PubMed ID: 26197475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ASGARD+: A New Modular Platform for Bacterial Antibiotic-Resistant Analysis.
    Montero-Vargas M; Saenz-Rojas A; Suárez-Esquivel M; Ramirez-Carvajal L
    Curr Protoc; 2023 Mar; 3(3):e680. PubMed ID: 36892262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Species-Specific Quality Control, Assembly and Contamination Detection in Microbial Isolate Sequences with AQUAMIS.
    Deneke C; Brendebach H; Uelze L; Borowiak M; Malorny B; Tausch SH
    Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33926025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.
    Pareja-Tobes P; Manrique M; Pareja-Tobes E; Pareja E; Tobes R
    PLoS One; 2012; 7(11):e49239. PubMed ID: 23185310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.