These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 32135148)

  • 1. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia.
    Imbe H; Kimura A
    Brain Res; 2020 May; 1735():146758. PubMed ID: 32135148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated forced swim stress prior to complete Freund's adjuvant injection enhances mechanical hyperalgesia and attenuates the expression of pCREB and ΔFosB and the acetylation of histone H3 in the insular cortex of rat.
    Imbe H; Kimura A
    Neuroscience; 2015 Aug; 301():12-25. PubMed ID: 26047723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of histone acetylation in the GABAergic neurons in the rostral ventromedial medulla associated with mechanical hypersensitivity after repeated restraint stress.
    Imbe H; Kimura A
    Brain Res Bull; 2018 Sep; 142():394-402. PubMed ID: 30227234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated forced swim stress affects the expression of pCREB and ΔFosB and the acetylation of histone H3 in the rostral ventromedial medulla and locus coeruleus.
    Imbe H; Kimura A
    Brain Res Bull; 2016 Oct; 127():11-22. PubMed ID: 27530066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.
    Imbe H; Kimura A
    Brain Res Bull; 2017 Sep; 134():253-261. PubMed ID: 28866293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.
    Imbe H; Kimura A; Donishi T; Kaneoke Y
    Neuroscience; 2014 Feb; 259():1-11. PubMed ID: 24291670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of HDAC4 and GR signaling contributes to stress-induced hyperalgesia in the medial prefrontal cortex of rats.
    Zhang L; Chen C; Qi J
    Brain Res; 2020 Nov; 1747():147051. PubMed ID: 32783961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations of estradiol-induced histone H3 acetylation in the preoptic area and anteroventral periventricular nucleus of middle-aged female rats.
    Xu W; Huang J; Li L; Zhang X; Wang Y; Tong G; Sun Y
    Biochem Biophys Res Commun; 2019 Aug; 516(3):894-899. PubMed ID: 31272713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic stress increases pain sensitivity via activation of the rACC-BLA pathway in rats.
    Liu LY; Zhang RL; Chen L; Zhao HY; Cai J; Wang JK; Guo DQ; Cui YJ; Xing GG
    Exp Neurol; 2019 Mar; 313():109-123. PubMed ID: 30586593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of restraint stress on glial activity in the rostral ventromedial medulla.
    Imbe H; Kimura A; Donishi T; Kaneoke Y
    Neuroscience; 2013 Jun; 241():10-21. PubMed ID: 23518226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of single or repeated restraint stress on several signal molecules in paraventricular nucleus, arcuate nucleus and locus coeruleus.
    Kwon MS; Seo YJ; Shim EJ; Choi SS; Lee JY; Suh HW
    Neuroscience; 2006 Nov; 142(4):1281-92. PubMed ID: 16938401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostaglandin E receptor EP3 subtype is involved in thermal hyperalgesia through its actions in the preoptic hypothalamus and the diagonal band of Broca in rats.
    Hosoi M; Oka T; Hori T
    Pain; 1997 Jul; 71(3):303-11. PubMed ID: 9231874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Social defeat stress potentiates thermal sensitivity in operant models of pain processing.
    Marcinkiewcz CA; Green MK; Devine DP; Duarte P; Vierck CJ; Yezierski RP
    Brain Res; 2009 Jan; 1251():112-20. PubMed ID: 19059227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala.
    Reagan LP; Hendry RM; Reznikov LR; Piroli GG; Wood GE; McEwen BS; Grillo CA
    Eur J Pharmacol; 2007 Jun; 565(1-3):68-75. PubMed ID: 17368617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter.
    Imbe H; Kimura A; Donishi T; Kaneoke Y
    Neuroscience; 2012 Oct; 223():209-18. PubMed ID: 22890077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin E2 in the medial preoptic area produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla.
    Heinricher MM; Neubert MJ; Martenson ME; Gonçalves L
    Neuroscience; 2004; 128(2):389-98. PubMed ID: 15350650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of Fos expression within the male rat preoptic area and hypothalamus in response to physical vs. psychological stress.
    Briski K; Gillen E
    Brain Res Bull; 2001 Jun; 55(3):401-8. PubMed ID: 11489348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role and mechanism of glutamic NMDA receptor in the mechanical hyperalgesia in diabetic rats.
    Wang J; Sun Z; Wang Y; Wang H; Guo Y
    Neurol Res; 2017 Nov; 39(11):1006-1013. PubMed ID: 28814157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NLRP3-mediated Neuroinflammation Exacerbates Incisional Hyperalgesia and Prolongs Recovery After Surgery in Chronic Stressed Rats.
    Meng Y; Zhuang L; Xue Q; Zhang J; Yu B
    Pain Physician; 2021 Nov; 24(7):E1099-E1108. PubMed ID: 34704719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylated cyclic AMP response element binding protein expression induced in the periaqueductal gray by predator stress: its relationship to the stress experience, behavior and limbic neural plasticity.
    Adamec RE; Blundell J; Burton P
    Prog Neuropsychopharmacol Biol Psychiatry; 2003 Dec; 27(8):1243-67. PubMed ID: 14659479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.