These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32135320)

  • 1. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives.
    Ahmad B; Yadav V; Yadav A; Rahman MU; Yuan WZ; Li Z; Wang X
    Sci Total Environ; 2020 Jun; 719():137315. PubMed ID: 32135320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review.
    Rodrigues RP; Gando-Ferreira LM; Quina MJ
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach.
    Lucarini M; Durazzo A; Romani A; Campo M; Lombardi-Boccia G; Cecchini F
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30060557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated biorefinery approach to valorize citrus waste: A sustainable solution for resource recovery and environmental management.
    Yadav V; Sarker A; Yadav A; Miftah AO; Bilal M; Iqbal HMN
    Chemosphere; 2022 Apr; 293():133459. PubMed ID: 34995629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products.
    Ioannidou SM; Filippi K; Kookos IK; Koutinas A; Ladakis D
    Bioresour Technol; 2022 Mar; 348():126295. PubMed ID: 34800640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scale energy valorization of grape marcs in winery production plants.
    Fabbri A; Bonifazi G; Serranti S
    Waste Manag; 2015 Feb; 36():156-65. PubMed ID: 25529134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast.
    Baptista SL; Romaní A; Cunha JT; Domingues L
    J Environ Manage; 2023 Jan; 326(Pt A):116623. PubMed ID: 36368200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic co-digestion of winery waste: comparative assessment of grape marc waste and lees derived from organic crops.
    Hungría J; Siles JA; Chica AF; Gil A; Martín MA
    Environ Technol; 2021 Sep; 42(23):3618-3626. PubMed ID: 32114938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives.
    Mishra S; Roy M; Mohanty K
    Bioresour Technol; 2019 Nov; 292():122008. PubMed ID: 31466819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery.
    Sirohi R; Tarafdar A; Singh S; Negi T; Gaur VK; Gnansounou E; Bharathiraja B
    Bioresour Technol; 2020 Oct; 314():123771. PubMed ID: 32653247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives.
    Venkata Mohan S; Nikhil GN; Chiranjeevi P; Nagendranatha Reddy C; Rohit MV; Kumar AN; Sarkar O
    Bioresour Technol; 2016 Sep; 215():2-12. PubMed ID: 27068056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery.
    Chandra R; Iqbal HMN; Vishal G; Lee HS; Nagra S
    Bioresour Technol; 2019 Apr; 278():346-359. PubMed ID: 30718075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable options for the utilization of solid residues from wine production.
    Zhang N; Hoadley A; Patel J; Lim S; Li C
    Waste Manag; 2017 Feb; 60():173-183. PubMed ID: 28094155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Cortina JL; Saurina J; Granados M
    Foods; 2022 Jan; 11(3):. PubMed ID: 35159513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of biofuels and biomolecules in the framework of circular economy: A regional case study.
    Jacquet N; Haubruge E; Richel A
    Waste Manag Res; 2015 Dec; 33(12):1121-6. PubMed ID: 26574581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.
    Rama Mohan S
    Bioresour Technol; 2016 Sep; 215():76-83. PubMed ID: 27039350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food Waste Biorefinery: Pathway towards Circular Bioeconomy.
    Tsegaye B; Jaiswal S; Jaiswal AK
    Foods; 2021 May; 10(6):. PubMed ID: 34073698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy.
    Igbokwe VC; Ezugworie FN; Onwosi CO; Aliyu GO; Obi CJ
    J Environ Manage; 2022 Mar; 305():114333. PubMed ID: 34952394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective.
    Hosseinzadeh-Bandbafha H; Nazemi F; Khounani Z; Ghanavati H; Shafiei M; Karimi K; Lam SS; Aghbashlo M; Tabatabaei M
    Sci Total Environ; 2022 Jan; 802():149842. PubMed ID: 34455274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biorefineries in circular bioeconomy: A comprehensive review.
    Ubando AT; Felix CB; Chen WH
    Bioresour Technol; 2020 Mar; 299():122585. PubMed ID: 31901305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.