These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3213768)

  • 41. Studies on lens proteins. I. Subunit structure of beta crystallins of rabbit lens cortex.
    Mostafapour MK; Reddy VN
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):660-6. PubMed ID: 669895
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Studies on cyclic AMP and protein kinase of lens. I. The states of cyclic AMP and protein kinase in normal rabbit and bovine lenses (author's transl)].
    Kawaba T; Matsuda H; Hayashi S
    Nippon Ganka Gakkai Zasshi; 1979; 83(11):2104-11. PubMed ID: 232643
    [No Abstract]   [Full Text] [Related]  

  • 43. [The effect of cultivation on the differentiated function of rabbit lens epithelial cells in vitro].
    Sasabe T; Uni A; Kiritoshi A; Kishida K
    Nippon Ganka Gakkai Zasshi; 1994 Jun; 98(6):545-50. PubMed ID: 8030568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Histochemical studies on the chloride differentiation of rabbit lenses].
    Saga U
    Nippon Ganka Gakkai Zasshi; 1973; 77(3):236-40. PubMed ID: 4737157
    [No Abstract]   [Full Text] [Related]  

  • 45. Effect of pilocarpine on lens metabolism.
    Hockwin O; Okamoto T; Licht W; Noll E
    Ophthalmologica; 1966; 152(1):46-56. PubMed ID: 5919998
    [No Abstract]   [Full Text] [Related]  

  • 46. Effects of in vivo and in vitro administered thyroxine on substrate metabolism of isolated rabbit ventricle mitochondria. 3. Substrate effects on pyridine nucleotide reduction, on the reversal of electron transport, and on the "respiratory control by ATP".
    Tarjan EM; Kimata SI
    Endocrinology; 1971 Aug; 89(2):385-96. PubMed ID: 4326787
    [No Abstract]   [Full Text] [Related]  

  • 47. Studies on the crystalline lens. XXI. Bidirectional carrier-mediated transport of lithium.
    Kinsey VE; McLean IW
    Invest Ophthalmol; 1974 Oct; 13(10):784-94. PubMed ID: 4415948
    [No Abstract]   [Full Text] [Related]  

  • 48. Fluorescence studies of lens epithelial cells and their constituents.
    Atherton SJ; Lambert C; Schultz J; Williams N; Zigman S
    Photochem Photobiol; 1999 Nov; 70(5):823-8. PubMed ID: 10568176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organophosphate metabolites of the human and rabbit crystalline lens: a phosphorus-31 nuclear magnetic resonance spectroscopic analysis.
    Greiner JV; Kopp SJ; Mercola JM; Glonek T
    Exp Eye Res; 1982 Apr; 34(4):545-52. PubMed ID: 6281053
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of ultrasonication of the rabbit lens in situ as evaluated by analysis of crystallin composition.
    Cuthbert J; Phillips CI; Clayton RM; Clarkson DM
    Trans Ophthalmol Soc U K (1962); 1978; 98(4):494-6. PubMed ID: 291212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Glycosylation and concentration of water soluble proteins in the rabbit lens].
    Cetnarowski L; Hernet M; Rózyczka J; Gutsze A; Domaniewski J
    Klin Oczna; 1988; 90 Suppl():486-7. PubMed ID: 3275368
    [No Abstract]   [Full Text] [Related]  

  • 52. [Effect of intraocular foreign body on lipid metabolism in the rabbit crystalline lens].
    Zygulska-Mach H; Mach Z; Grabowska-Maślanka H
    Folia Med Cracov; 1986; 27(1-2):29-35. PubMed ID: 3732955
    [No Abstract]   [Full Text] [Related]  

  • 53. Studies on the crystalline lens. XII. Turnover of glycine and glutamic acid in glutathione and ophthalmic acid in the rabbit.
    Reddy DV; Klethi J; Kinsey VE
    Invest Ophthalmol; 1966 Dec; 5(6):594-600. PubMed ID: 5927446
    [No Abstract]   [Full Text] [Related]  

  • 54. [Studies on fluorescent colour of the lens. I. Fluorescent colour of fatty components of the lens].
    Shimizu K
    Nippon Ganka Gakkai Zasshi; 1967 Feb; 71(2):178-86. PubMed ID: 6070866
    [No Abstract]   [Full Text] [Related]  

  • 55. Biochemical modifications of the crystalline lens in the experimental hypercholesteremia of rabbits.
    Schuller L; Kerekes M; Bedö C
    Experientia; 1966 Mar; 22(3):162. PubMed ID: 5959926
    [No Abstract]   [Full Text] [Related]  

  • 56. Evidence of two soluble RNA types in eye lens.
    Virmaux N; Mandel P; Urban PF
    Biochem Biophys Res Commun; 1964 Jul; 16(4):308-13. PubMed ID: 5871814
    [No Abstract]   [Full Text] [Related]  

  • 57. Notes on some aspects of the hydration, in vitro, of the lens under various experimental conditions.
    CASCIO G; PONTE F
    Ophthalmologica; 1958 Nov; 136(5):345-51. PubMed ID: 13613703
    [No Abstract]   [Full Text] [Related]  

  • 58. Fish eye-lens reagents: sex-specific agglutination of human erythrocytes.
    Smith AC
    J Nat Prod; 1986; 49(1):163-6. PubMed ID: 3701339
    [No Abstract]   [Full Text] [Related]  

  • 59. Distribution of a 488.0-nm-excited fluorophor in the equatorial plane of the human lens by a laser Raman microprobe: a new concept in fluorescence studies.
    Barron BC; Yu NT; Kuck JF
    Exp Eye Res; 1988 Dec; 47(6):901-4. PubMed ID: 3215298
    [No Abstract]   [Full Text] [Related]  

  • 60. Pyridine nucleotide fluorescence measurements with simultaneous visualization of the microcirculation in skeletal muscle.
    Koller A; Johnson PC
    Adv Exp Med Biol; 1985; 191():375-86. PubMed ID: 3832854
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.