These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32138291)

  • 1. Data Analytics and Applications of the Wearable Sensors in Healthcare: An Overview.
    Uddin M; Syed-Abdul S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32138291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.
    Gholami M; Rezaei A; Cuthbert TJ; Napier C; Menon C
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning for Healthcare Wearable Devices: The Big Picture.
    Sabry F; Eltaras T; Labda W; Alzoubi K; Malluhi Q
    J Healthc Eng; 2022; 2022():4653923. PubMed ID: 35480146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable and Implantable Sensors for Biomedical Applications.
    Koydemir HC; Ozcan A
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):127-146. PubMed ID: 29490190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearables and the medical revolution.
    Dunn J; Runge R; Snyder M
    Per Med; 2018 Sep; 15(5):429-448. PubMed ID: 30259801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data.
    Papagiannaki A; Zacharaki EI; Kalouris G; Kalogiannis S; Deltouzos K; Ellul J; Megalooikonomou V
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imputing Missing Data In Large-Scale Multivariate Biomedical Wearable Recordings Using Bidirectional Recurrent Neural Networks With Temporal Activation Regularization.
    Feng T; Narayanan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2529-2534. PubMed ID: 31946412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data.
    Hendry D; Leadbetter R; McKee K; Hopper L; Wild C; O'Sullivan P; Straker L; Campbell A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human emotion classification based on multiple physiological signals by wearable system.
    Liu X; Wang Q; Liu D; Wang Y; Zhang Y; Bai O; Sun J
    Technol Health Care; 2018; 26(S1):459-469. PubMed ID: 29758969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Do-It-Yourself' Healthcare? Quality of Health and Healthcare Through Wearable Sensors.
    Vesnic-Alujevic L; Breitegger M; Guimarães Pereira Â
    Sci Eng Ethics; 2018 Jun; 24(3):887-904. PubMed ID: 27029478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Science Approaches for Effective Use of Mobile Device-Based Collection of Real-World Data.
    Omberg L; Chaibub Neto E; Mangravite LM
    Clin Pharmacol Ther; 2020 Apr; 107(4):719-721. PubMed ID: 32036612
    [No Abstract]   [Full Text] [Related]  

  • 13. Machine learning for predictive data analytics in medicine: A review illustrated by cardiovascular and nuclear medicine examples.
    Jamin A; Abraham P; Humeau-Heurtier A
    Clin Physiol Funct Imaging; 2021 Mar; 41(2):113-127. PubMed ID: 33316137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Predictive Analysis of Heart Rates Using Machine Learning Techniques.
    Oyeleye M; Chen T; Titarenko S; Antoniou G
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Device Invariant Deep Neural Networks for Pulmonary Audio Event Detection Across Mobile and Wearable Devices.
    Ahmed MY; Zhu L; Rahman MM; Ahmed T; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5631-5637. PubMed ID: 34892400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation.
    De Cannière H; Corradi F; Smeets CJP; Schoutteten M; Varon C; Van Hoof C; Van Huffel S; Groenendaal W; Vandervoort P
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey.
    Can YS; Arnrich B; Ersoy C
    J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable context aware system for ubiquitous healthcare.
    Kang DO; Lee HJ; Ko EJ; Kang K; Lee J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5192-5. PubMed ID: 17947132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices.
    Qi J; Yang Y; Peng X; Newcombe L; Simpson A; Yang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2492-2495. PubMed ID: 31946403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decision-Making based on Big Data Analytics for People Management in Healthcare Organizations.
    Sousa MJ; Pesqueira AM; Lemos C; Sousa M; Rocha Á
    J Med Syst; 2019 Jul; 43(9):290. PubMed ID: 31332535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.