BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32138643)

  • 1. Detecting circular RNA from high-throughput sequence data with de Bruijn graph.
    Li X; Wu Y
    BMC Genomics; 2020 Mar; 21(Suppl 1):749. PubMed ID: 32138643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fcirc: A comprehensive pipeline for the exploration of fusion linear and circular RNAs.
    Cai Z; Xue H; Xu Y; Köhler J; Cheng X; Dai Y; Zheng J; Wang H
    Gigascience; 2020 Jun; 9(6):. PubMed ID: 32470133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BrownieAligner: accurate alignment of Illumina sequencing data to de Bruijn graphs.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2018 Sep; 19(1):311. PubMed ID: 30180801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. circDeep: deep learning approach for circular RNA classification from other long non-coding RNA.
    Chaabane M; Williams RM; Stephens AT; Park JW
    Bioinformatics; 2020 Jan; 36(1):73-80. PubMed ID: 31268128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying similar transcripts in a related organism from de Bruijn graphs of RNA-Seq data, with applications to the study of salt and waterlogging tolerance in Melilotus.
    Fu S; Chang PL; Friesen ML; Teakle NL; Tarone AM; Sze SH
    BMC Genomics; 2019 Jun; 20(Suppl 5):425. PubMed ID: 31167652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive comparison of two types of algorithm for circRNA detection from short-read RNA-Seq.
    Liu H; Akhatayeva Z; Pan C; Liao M; Lan X
    Bioinformatics; 2022 May; 38(11):3037-3043. PubMed ID: 35482518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields.
    Steyaert A; Audenaert P; Fostier J
    BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the representation of de Bruijn graphs.
    Chikhi R; Limasset A; Jackman S; Simpson JT; Medvedev P
    J Comput Biol; 2015 May; 22(5):336-52. PubMed ID: 25629448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CircMarker: a fast and accurate algorithm for circular RNA detection.
    Li X; Chu C; Pei J; Măndoiu I; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):572. PubMed ID: 30367583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CircMiner: accurate and rapid detection of circular RNA through splice-aware pseudo-alignment scheme.
    Asghari H; Lin YY; Xu Y; Haghshenas E; Collins CC; Hach F
    Bioinformatics; 2020 Jun; 36(12):3703-3711. PubMed ID: 32259207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Algorithm for Sensitively Detecting Circular RNA from RNA-seq Data.
    Zhang X; Wang Y; Zhao Z; Wang J
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30250003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IsoTree: A New Framework for de novo Transcriptome Assembly from RNA-seq Reads.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):938-948. PubMed ID: 29994455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index.
    Liu B; Liu Y; Li J; Guo H; Zang T; Wang Y
    Genome Biol; 2019 Dec; 20(1):274. PubMed ID: 31842925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying circular RNA expression from RNA-seq data using model-based framework.
    Li M; Xie X; Zhou J; Sheng M; Yin X; Ko EA; Zhou T; Gu W
    Bioinformatics; 2017 Jul; 33(14):2131-2139. PubMed ID: 28334396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting genomic deletions from high-throughput sequence data with unsupervised learning.
    Li X; Wu Y
    BMC Bioinformatics; 2023 Jan; 23(Suppl 8):568. PubMed ID: 36707775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling and bioinformatics analyses reveal differential expression of circular RNA in tongue cancer revealed by high-throughput sequencing.
    Qiu X; Ke X; Ma H; Han L; Chen Q; Zhang S; Da P; Wu H
    J Cell Biochem; 2019 Mar; 120(3):4102-4112. PubMed ID: 30269358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical dynamic de Bruijn graphs.
    Crawford VG; Kuhnle A; Boucher C; Chikhi R; Gagie T
    Bioinformatics; 2018 Dec; 34(24):4189-4195. PubMed ID: 29939217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.