BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 32139584)

  • 21. Interactions between oligodendrocyte precursors control the onset of CNS myelination.
    Yang Y; Lewis R; Miller RH
    Dev Biol; 2011 Feb; 350(1):127-38. PubMed ID: 21144846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chronology of oligodendrocyte differentiation in the rat optic nerve: evidence for a signaling step initiating myelination in the CNS.
    Colello RJ; Devey LR; Imperato E; Pott U
    J Neurosci; 1995 Nov; 15(11):7665-72. PubMed ID: 7472517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice.
    Xin M; Yue T; Ma Z; Wu FF; Gow A; Lu QR
    J Neurosci; 2005 Feb; 25(6):1354-65. PubMed ID: 15703389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.
    Kornfeld SF; Lynch-Godrei A; Bonin SR; Gibeault S; De Repentigny Y; Kothary R
    PLoS One; 2016; 11(2):e0149201. PubMed ID: 26886550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation.
    Dai J; Bercury KK; Macklin WB
    Glia; 2014 Dec; 62(12):2096-109. PubMed ID: 25060812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation.
    Ornelas IM; Khandker L; Wahl SE; Hashimoto H; Macklin WB; Wood TL
    Glia; 2020 Jun; 68(6):1274-1290. PubMed ID: 31904150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leukemia inhibitory factor regulates the timing of oligodendrocyte development and myelination in the postnatal optic nerve.
    Ishibashi T; Lee PR; Baba H; Fields RD
    J Neurosci Res; 2009 Nov; 87(15):3343-55. PubMed ID: 19598242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination.
    Bernard F; Moreau-Fauvarque C; Heitz-Marchaland C; Zagar Y; Dumas L; Fouquet S; Lee X; Shao Z; Mi S; Chédotal A
    Glia; 2012 Oct; 60(10):1590-604. PubMed ID: 22777942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting the AKT/mTOR/p70S6K Pathway for Oligodendrocyte Differentiation and Myelin Regeneration in Neurological Disorders.
    Ge C; Li C
    Curr Neurovasc Res; 2023; 20(4):453-463. PubMed ID: 37817523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strength of ERK1/2 MAPK Activation Determines Its Effect on Myelin and Axonal Integrity in the Adult CNS.
    Ishii A; Furusho M; Dupree JL; Bansal R
    J Neurosci; 2016 Jun; 36(24):6471-87. PubMed ID: 27307235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS.
    Domènech-Estévez E; Baloui H; Meng X; Zhang Y; Deinhardt K; Dupree JL; Einheber S; Chrast R; Salzer JL
    J Neurosci; 2016 Apr; 36(16):4506-21. PubMed ID: 27098694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynein/dynactin is necessary for anterograde transport of
    Herbert AL; Fu MM; Drerup CM; Gray RS; Harty BL; Ackerman SD; O'Reilly-Pol T; Johnson SL; Nechiporuk AV; Barres BA; Monk KR
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):E9153-E9162. PubMed ID: 29073112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling.
    Bijlard M; Klunder B; de Jonge JC; Nomden A; Tyagi S; de Vries H; Hoekstra D; Baron W
    Mol Cell Biol; 2015 Feb; 35(4):675-87. PubMed ID: 25512606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signaling by FGF Receptor 2, Not FGF Receptor 1, Regulates Myelin Thickness through Activation of ERK1/2-MAPK, Which Promotes mTORC1 Activity in an Akt-Independent Manner.
    Furusho M; Ishii A; Bansal R
    J Neurosci; 2017 Mar; 37(11):2931-2946. PubMed ID: 28193689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glial and Neuronal Protein Tyrosine Phosphatase Alpha (PTPα) Regulate Oligodendrocyte Differentiation and Myelination.
    Shih Y; Ly PTT; Wang J; Pallen CJ
    J Mol Neurosci; 2017 Aug; 62(3-4):329-343. PubMed ID: 28647856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deficient expression of insulin receptor substrate-1 (IRS-1) fails to block insulin-like growth factor-I (IGF-I) stimulation of brain growth and myelination.
    Ye P; Li L; Lund PK; D'Ercole AJ
    Brain Res Dev Brain Res; 2002 Jun; 136(2):111-21. PubMed ID: 12101028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination.
    Thomason EJ; Escalante M; Osterhout DJ; Fuss B
    Glia; 2020 Jul; 68(7):1329-1346. PubMed ID: 31696982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of mTORC2 signaling in oligodendrocyte precursor cells delays myelination.
    Grier MD; West KL; Kelm ND; Fu C; Does MD; Parker B; McBrier E; Lagrange AH; Ess KC; Carson RP
    PLoS One; 2017; 12(11):e0188417. PubMed ID: 29161318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CXXC5 plays a role as a transcription activator for myelin genes on oligodendrocyte differentiation.
    Kim MY; Kim HY; Hong J; Kim D; Lee H; Cheong E; Lee Y; Roth J; Kim DG; Min do S; Choi KY
    Glia; 2016 Mar; 64(3):350-62. PubMed ID: 26462610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood.
    Ishii A; Furusho M; Macklin W; Bansal R
    Glia; 2019 Jul; 67(7):1277-1295. PubMed ID: 30761608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.