These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32139675)

  • 21. Communications: Exceptions to the d-band model of chemisorption on metal surfaces: The dominant role of repulsion between adsorbate states and metal d-states.
    Xin H; Linic S
    J Chem Phys; 2010 Jun; 132(22):221101. PubMed ID: 20550380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.
    Schauermann S; Freund HJ
    Acc Chem Res; 2015 Oct; 48(10):2775-82. PubMed ID: 26366783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nature of the interactions between Pt4 cluster and the adsorbates *H, *OH, and H2O.
    Parreira RL; Caramori GF; Galembeck SE; Huguenin F
    J Phys Chem A; 2008 Nov; 112(46):11731-43. PubMed ID: 18942818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers.
    Calle-Vallejo F; Martínez JI; García-Lastra JM; Sautet P; Loffreda D
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8316-9. PubMed ID: 24919964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential energy surfaces for oxygen adsorption, dissociation, and diffusion at the Pt(321) surface.
    Bray JM; Schneider WF
    Langmuir; 2011 Jul; 27(13):8177-86. PubMed ID: 21630697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity.
    Takam B; Tarkwa JB; Acayanka E; Nzali S; Chesseu DM; Kamgang GY; Laminsi S
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20500-20515. PubMed ID: 32246422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An accurate empirical method to predict the adsorption strength for π-orbital contained molecules on two dimensional materials.
    Li H; Wang C; Xun S; He J; Jiang W; Zhang M; Zhu W; Li H
    J Mol Graph Model; 2018 Jun; 82():93-100. PubMed ID: 29715624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic composition-property relationship applied to SO2 chemisorption on Pt111 surfaces, alloys, and overlayers.
    Tang H; Trout BL
    J Phys Chem B; 2005 Apr; 109(15):6948-51. PubMed ID: 16851787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitatively Determining Surface-Adsorbate Properties from Vibrational Spectroscopy with Interpretable Machine Learning.
    Wang X; Jiang S; Hu W; Ye S; Wang T; Wu F; Yang L; Li X; Zhang G; Chen X; Jiang J; Luo Y
    J Am Chem Soc; 2022 Sep; 144(35):16069-16076. PubMed ID: 36001497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces.
    Miller SD; Inoğlu N; Kitchin JR
    J Chem Phys; 2011 Mar; 134(10):104709. PubMed ID: 21405186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formulating the bonding contribution equation in heterogeneous catalysis: a quantitative description between the surface structure and adsorption energy.
    Wang Z; Hu P
    Phys Chem Chem Phys; 2017 Feb; 19(7):5063-5069. PubMed ID: 28168259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring the interaction of adsorbates on metal surfaces by surface site engineering: the case of ethoxy on Cu, Pd, Ag and Au regular and stepped surfaces.
    Radilla J; Boronat M; Corma A; Illas F
    Phys Chem Chem Phys; 2010 Jun; 12(24):6492-8. PubMed ID: 20424790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimer-anticorrelation-induced stabilization of adsorbate clustering on the Si100-(2 x 1) surface.
    Chen D; Boland JJ
    Phys Rev Lett; 2004 Mar; 92(9):096103. PubMed ID: 15089492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DockOnSurf: A Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces.
    Martí C; Blanck S; Staub R; Loehlé S; Michel C; Steinmann SN
    J Chem Inf Model; 2021 Jul; 61(7):3386-3396. PubMed ID: 34160214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support.
    G Verga L; Russell AE; Skylaris CK
    Phys Chem Chem Phys; 2018 Oct; 20(40):25918-25930. PubMed ID: 30289424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-principles descriptors of CO chemisorption on Ni and Cu surfaces.
    Gameel KM; Sharafeldin IM; Allam NK
    Phys Chem Chem Phys; 2019 Jun; 21(21):11476-11487. PubMed ID: 31112167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interplay between Adsorbates and Polarons: CO on Rutile TiO_{2}(110).
    Reticcioli M; Sokolović I; Schmid M; Diebold U; Setvin M; Franchini C
    Phys Rev Lett; 2019 Jan; 122(1):016805. PubMed ID: 31012645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.
    Silber D; Kowalski PM; Traeger F; Buchholz M; Bebensee F; Meyer B; Wöll C
    Nat Commun; 2016 Sep; 7():12888. PubMed ID: 27686286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.