These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3213968)

  • 1. Secretory activity in the floor plate neuroepithelium of the developing human spinal cord: morphological evidence.
    Tanaka O; Yoshioka T; Shinohara H
    Anat Rec; 1988 Oct; 222(2):185-90. PubMed ID: 3213968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparative scanning and transmission electron microscopy studies of the ependyma of the central canal in the spinal cord of primates. I. Electron optical image of the ependyma in the central canal of the spinal cord of the callithrix monkey (Callithrix jacchus, Linné 1758)].
    Erhardt H; Meinel W
    Gegenbaurs Morphol Jahrb; 1986; 132(4):535-54. PubMed ID: 3098621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytic apparatus and transcytosis in epithelial cells of the vas deferens in the rat.
    Hermo L; de Melo V
    Anat Rec; 1987 Feb; 217(2):153-63. PubMed ID: 3578834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of glycogen in the floor plate of the chick spinal cord during development.
    Uehara M; Ueshima T
    Anat Rec; 1984 May; 209(1):105-13. PubMed ID: 6731867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hindbrain floor plate of the rat: ultrastructural changes occurring during development.
    del Brio MA; Riera P; Peruzzo B; Rodríguez EM
    Microsc Res Tech; 2001 Mar; 52(5):615-26. PubMed ID: 11241870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electron microscopic study of the development of the ependyma of the central canal of the mouse spinal cord.
    Sturrock RR
    J Anat; 1981 Jan; 132(Pt 1):119-36. PubMed ID: 7275786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New cell surface marker of the rat floor plate and notochord.
    Zhu Q; Runko E; Imondi R; Milligan T; Kapitula D; Kaprielian Z
    Dev Dyn; 1998 Apr; 211(4):314-26. PubMed ID: 9566951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical properties of the "floor plate glycogen body" of the human embryonic spinal cord and brain stem.
    Flood PR
    Med Biol; 1986; 64(2-3):159-65. PubMed ID: 3747622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog.
    Pringle NP; Yu WP; Guthrie S; Roelink H; Lumsden A; Peterson AC; Richardson WD
    Dev Biol; 1996 Jul; 177(1):30-42. PubMed ID: 8660874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology of the air-breathing stomach of the catfish Hypostomus plecostomus.
    Podkowa D; Goniakowska-Witalińska L
    J Morphol; 2003 Aug; 257(2):147-63. PubMed ID: 12833376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supra-neuroectodermal cells and fibers on the primary nasal cavity and in the fourth ventricle of mouse and human embryos: scanning and transmission electron microscopic studies.
    Otani H; Tanaka O; Yoshioka T
    Anat Rec; 1992 Jun; 233(2):270-80. PubMed ID: 1605391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fine structure of the spinal cord in human embryos and early fetuses.
    Wozniak W; O'Rahilly R; Olszewska B
    J Hirnforsch; 1980; 21(1):101-24. PubMed ID: 7381194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Vimentin and neuroepithelial cell differentiation in the spinal cord of chick embryos: an immunohistochemical study].
    Kumano I; Iwatsuki H; Suda M; Sasaki K
    Kaibogaku Zasshi; 1999 Jun; 74(3):317-23. PubMed ID: 10429376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clara cell differentiation in the mouse: ultrastructural morphology and cytochemistry for surfactant protein A and Clara cell 10 kD protein.
    Ten Have-Opbroek AA; De Vries EC
    Microsc Res Tech; 1993 Dec; 26(5):400-11. PubMed ID: 8286786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and morphometric studies in pancreatic acinar cells of the rat at successive post-mortem intervals. The early appearance of a previously undescribed Golgi complex associated tubular vesicular structure.
    Iwamura ES; Sesso A
    J Submicrosc Cytol Pathol; 1999 Jul; 31(3):449-58. PubMed ID: 10626012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection.
    Homma S; Yaginuma H; Oppenheim RW
    J Comp Neurol; 1994 Jul; 345(3):377-95. PubMed ID: 7929907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transmission electron microscopic studies of the organization of the ependymocytes in the central canal of the spinal cord of Cercopithecus nigroviridis (Pocock 1907), (Platyrrhina, Cercopithecoidea)].
    Meinel W; Erhardt H
    Gegenbaurs Morphol Jahrb; 1988; 134(5):625-35. PubMed ID: 3224798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study.
    Rafols JA; Goshgarian HG
    Anat Rec; 1985 Jan; 211(1):75-86. PubMed ID: 3985381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein secretion from rat mammary epithelial cells during pregnancy.
    Dylewski DP; Keenan TW
    Cytobios; 1984; 39(155-156):191-206. PubMed ID: 6734268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.