These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32139686)

  • 1. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes.
    Porse A; Jahn LJ; Ellabaan MMH; Sommer MOA
    Nat Commun; 2020 Mar; 11(1):1199. PubMed ID: 32139686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance.
    Durão P; Trindade S; Sousa A; Gordo I
    Mol Biol Evol; 2015 Oct; 32(10):2675-80. PubMed ID: 26130082
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Knopp M; Gudmundsdottir JS; Nilsson T; König F; Warsi O; Rajer F; Ädelroth P; Andersson DI
    mBio; 2019 Jun; 10(3):. PubMed ID: 31164464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic resistance begets more resistance: chromosomal resistance mutations mitigate fitness costs conferred by multi-resistant clinical plasmids.
    Nair RR; Andersson DI; Warsi OM
    Microbiol Spectr; 2024 May; 12(5):e0420623. PubMed ID: 38534122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance.
    Händel N; Schuurmans JM; Feng Y; Brul S; ter Kuile BH
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4371-9. PubMed ID: 24841263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental changes bridge evolutionary valleys.
    Steinberg B; Ostermeier M
    Sci Adv; 2016 Jan; 2(1):e1500921. PubMed ID: 26844293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial evolution of antibiotic hypersensitivity.
    Lázár V; Pal Singh G; Spohn R; Nagy I; Horváth B; Hrtyan M; Busa-Fekete R; Bogos B; Méhi O; Csörgő B; Pósfai G; Fekete G; Szappanos B; Kégl B; Papp B; Pál C
    Mol Syst Biol; 2013 Oct; 9():700. PubMed ID: 24169403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial mutations direct alternative pathways of protein evolution.
    Salverda ML; Dellus E; Gorter FA; Debets AJ; van der Oost J; Hoekstra RF; Tawfik DS; de Visser JA
    PLoS Genet; 2011 Mar; 7(3):e1001321. PubMed ID: 21408208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance.
    Durão P; Balbontín R; Gordo I
    Trends Microbiol; 2018 Aug; 26(8):677-691. PubMed ID: 29439838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidrug-resistant bacteria compensate for the epistasis between resistances.
    Moura de Sousa J; Balbontín R; Durão P; Gordo I
    PLoS Biol; 2017 Apr; 15(4):e2001741. PubMed ID: 28419091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic architecture of intrinsic antibiotic susceptibility.
    Girgis HS; Hottes AK; Tavazoie S
    PLoS One; 2009 May; 4(5):e5629. PubMed ID: 19462005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictable Phenotypes of Antibiotic Resistance Mutations.
    Knopp M; Andersson DI
    mBio; 2018 May; 9(3):. PubMed ID: 29764951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in 16S ribosomal RNA disrupt antibiotic--RNA interactions.
    De Stasio EA; Moazed D; Noller HF; Dahlberg AE
    EMBO J; 1989 Apr; 8(4):1213-6. PubMed ID: 2472961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress.
    Wellner SM; Alobaidallah MSA; Fei X; Herrero-Fresno A; Olsen JE
    Sci Rep; 2024 Feb; 14(1):4163. PubMed ID: 38378700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive epistasis drives the acquisition of multidrug resistance.
    Trindade S; Sousa A; Xavier KB; Dionisio F; Ferreira MG; Gordo I
    PLoS Genet; 2009 Jul; 5(7):e1000578. PubMed ID: 19629166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli.
    Hoeksema M; Jonker MJ; Brul S; Ter Kuile BH
    BMC Genomics; 2019 Apr; 20(1):284. PubMed ID: 30975082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations.
    Silva RF; Mendonça SC; Carvalho LM; Reis AM; Gordo I; Trindade S; Dionisio F
    PLoS Genet; 2011 Jul; 7(7):e1002181. PubMed ID: 21829372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pervasive Selection for Clinically Relevant Resistance and Media Adaptive Mutations at Very Low Antibiotic Concentrations.
    Pereira C; Warsi OM; Andersson DI
    Mol Biol Evol; 2023 Jan; 40(1):. PubMed ID: 36627817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of chlorate- and streptomycin-resistance mutations on nitrofurantoin resistance in Escherichia coli K-12.
    Obaseiki-Ebor EE; Breeze AS
    Can J Microbiol; 1984 Dec; 30(12):1448-52. PubMed ID: 6395949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.