These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32139686)

  • 21. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics.
    Chernoff YO; Vincent A; Liebman SW
    EMBO J; 1994 Feb; 13(4):906-13. PubMed ID: 8112304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with
    Card KJ; Thomas MD; Graves JL; Barrick JE; Lenski RE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33441451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins.
    Knopp M; Andersson DI
    Mol Biol Evol; 2015 Dec; 32(12):3252-63. PubMed ID: 26358402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Distribution Characteristics of Antibiotics and Antibiotic Resistance Genes in Manure and Surrounding Soil of Poultry Farm in Ningxia].
    Shen C; Zhang JH; Liu JL; Han XN; Shang TH; Dai JX
    Huan Jing Ke Xue; 2022 Aug; 43(8):4166-4178. PubMed ID: 35971714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in
    Mogre A; Veetil RT; Seshasayee ASN
    G3 (Bethesda); 2017 Dec; 7(12):3955-3966. PubMed ID: 29046437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bypass of genetic constraints during mutator evolution to antibiotic resistance.
    Couce A; Rodríguez-Rojas A; Blázquez J
    Proc Biol Sci; 2015 Apr; 282(1804):20142698. PubMed ID: 25716795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epistasis between antibiotic tolerance, persistence, and resistance mutations.
    Levin-Reisman I; Brauner A; Ronin I; Balaban NQ
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14734-14739. PubMed ID: 31262806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance.
    Lukačišinová M; Fernando B; Bollenbach T
    Nat Commun; 2020 Jun; 11(1):3105. PubMed ID: 32561723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages.
    Durão P; Gülereşi D; Proença J; Gordo I
    Antimicrob Agents Chemother; 2016 Jul; 60(7):4324-32. PubMed ID: 27161646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential.
    Pal C; Bengtsson-Palme J; Kristiansson E; Larsson DG
    BMC Genomics; 2015 Nov; 16():964. PubMed ID: 26576951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance.
    Walkiewicz K; Benitez Cardenas AS; Sun C; Bacorn C; Saxer G; Shamoo Y
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21408-13. PubMed ID: 23236139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
    Schenk MF; Szendro IG; Salverda ML; Krug J; de Visser JA
    Mol Biol Evol; 2013 Aug; 30(8):1779-87. PubMed ID: 23676768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli.
    Schrag SJ; Perrot V; Levin BR
    Proc Biol Sci; 1997 Sep; 264(1386):1287-91. PubMed ID: 9332013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors.
    Zhao R; Feng J; Huang J; Li X; Li B
    Sci Total Environ; 2021 Feb; 755(Pt 2):142632. PubMed ID: 33045611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The contribution of a novel ribosomal S12 mutation to aminoglycoside resistance of Escherichia coli mutants.
    Gill AE; Amyes SG
    J Chemother; 2004 Aug; 16(4):347-9. PubMed ID: 15332709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Access to high-impact mutations constrains the evolution of antibiotic resistance in soft agar.
    Ghaddar N; Hashemidahaj M; Findlay BL
    Sci Rep; 2018 Nov; 8(1):17023. PubMed ID: 30451932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impairing methylations at ribosome RNA, a point mutation-dependent strategy for aminoglycoside resistance: the rsmG case.
    Benítez-Páez A; Cárdenas-Brito S; Corredor M; Villarroya M; Armengod ME
    Biomedica; 2014 Apr; 34 Suppl 1():41-9. PubMed ID: 24968035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria.
    Levin BR; Perrot V; Walker N
    Genetics; 2000 Mar; 154(3):985-97. PubMed ID: 10757748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance.
    Tsai K; Stojković V; Noda-Garcia L; Young ID; Myasnikov AG; Kleinman J; Palla A; Floor SN; Frost A; Fraser JS; Tawfik DS; Fujimori DG
    Elife; 2022 Jan; 11():. PubMed ID: 35015630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.