BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32140301)

  • 21. Machine learning-based prediction of acute kidney injury after nephrectomy in patients with renal cell carcinoma.
    Lee Y; Ryu J; Kang MW; Seo KH; Kim J; Suh J; Kim YC; Kim DK; Oh KH; Joo KW; Kim YS; Jeong CW; Lee SC; Kwak C; Kim S; Han SS
    Sci Rep; 2021 Aug; 11(1):15704. PubMed ID: 34344909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning approaches for the prediction of postoperative complication risk in liver resection patients.
    Zeng S; Li L; Hu Y; Luo L; Fang Y
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):371. PubMed ID: 34969378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using Machine Learning to Predict Acute Kidney Injury After Aortic Arch Surgery.
    Lei G; Wang G; Zhang C; Chen Y; Yang X
    J Cardiothorac Vasc Anesth; 2020 Dec; 34(12):3321-3328. PubMed ID: 32636105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy.
    Kang MW; Kim J; Kim DK; Oh KH; Joo KW; Kim YS; Han SS
    Crit Care; 2020 Feb; 24(1):42. PubMed ID: 32028984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study.
    Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC
    J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 27. Machine learning predicts lymph node metastasis of poorly differentiated-type intramucosal gastric cancer.
    Zhou CM; Wang Y; Ye HT; Yan S; Ji M; Liu P; Yang JJ
    Sci Rep; 2021 Jan; 11(1):1300. PubMed ID: 33446730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury.
    Parreco J; Soe-Lin H; Parks JJ; Byerly S; Chatoor M; Buicko JL; Namias N; Rattan R
    Am Surg; 2019 Jul; 85(7):725-729. PubMed ID: 31405416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial Intelligence for Risk Prediction of Rehospitalization with Acute Kidney Injury in Sepsis Survivors.
    Ou SM; Lee KH; Tsai MT; Tseng WC; Chu YC; Tarng DC
    J Pers Med; 2022 Jan; 12(1):. PubMed ID: 35055358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.
    Zou Y; Zhao L; Zhang J; Wang Y; Wu Y; Ren H; Wang T; Zhang R; Wang J; Zhao Y; Qin C; Xu H; Li L; Chai Z; Cooper ME; Tong N; Liu F
    Ren Fail; 2022 Dec; 44(1):562-570. PubMed ID: 35373711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning-based in-hospital mortality prediction models for patients with acute coronary syndrome.
    Ke J; Chen Y; Wang X; Wu Z; Zhang Q; Lian Y; Chen F
    Am J Emerg Med; 2022 Mar; 53():127-134. PubMed ID: 35033770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor.
    Liu L; Jiao Y; Li X; Ouyang Y; Shi D
    Comput Methods Programs Biomed; 2020 Nov; 196():105624. PubMed ID: 32623348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Risk Stratification for Postoperative Acute Kidney Injury in Major Noncardiac Surgery Using Preoperative and Intraoperative Data.
    Lei VJ; Luong T; Shan E; Chen X; Neuman MD; Eneanya ND; Polsky DE; Volpp KG; Fleisher LA; Holmes JH; Navathe AS
    JAMA Netw Open; 2019 Dec; 2(12):e1916921. PubMed ID: 31808922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers.
    Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A
    Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel multivariable time series prediction model for acute kidney injury in general hospitalization.
    Xu J; Hu Y; Liu H; Mi W; Li G; Guo J; Feng Y
    Int J Med Inform; 2022 May; 161():104729. PubMed ID: 35279551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles.
    Nezu N; Usui Y; Saito A; Shimizu H; Asakage M; Yamakawa N; Tsubota K; Wakabayashi Y; Narimatsu A; Umazume K; Maruyama K; Sugimoto M; Kuroda M; Goto H
    Ophthalmology; 2021 Aug; 128(8):1197-1208. PubMed ID: 33484732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance assessment of the metastatic spinal tumor frailty index using machine learning algorithms: limitations and future directions.
    Massaad E; Williams N; Hadzipasic M; Patel SS; Fourman MS; Kiapour A; Schoenfeld AJ; Shankar GM; Shin JH
    Neurosurg Focus; 2021 May; 50(5):E5. PubMed ID: 33932935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation.
    Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P
    Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of machine learning models in predicting early stone-free rate after flexible ureteroscopic lithotripsy for renal stones].
    Zhu XH; Yang MY; Xia HZ; He W; Zhang ZY; Liu YQ; Xiao CL; Ma LL; Lu J
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Aug; 51(4):653-659. PubMed ID: 31420617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.