BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32140575)

  • 1. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases.
    Franklin A; Steele EJ; Lindley RA
    Heliyon; 2020 Feb; 6(2):e03258. PubMed ID: 32140575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures.
    Steele EJ
    DNA Repair (Amst); 2016 Sep; 45():1-24. PubMed ID: 27449479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease-associated repeat instability and mismatch repair.
    Schmidt MHM; Pearson CE
    DNA Repair (Amst); 2016 Feb; 38():117-126. PubMed ID: 26774442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.
    Chan NL; Guo J; Zhang T; Mao G; Hou C; Yuan F; Huang J; Zhang Y; Wu J; Gu L; Li GM
    J Biol Chem; 2013 May; 288(21):15015-22. PubMed ID: 23585564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genesis of the strand-biased signature in somatic hypermutation of rearranged immunoglobulin variable genes.
    Steele EJ; Franklin A; Blanden RV
    Immunol Cell Biol; 2004 Apr; 82(2):209-18. PubMed ID: 15061776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.
    Pinto RM; Dragileva E; Kirby A; Lloret A; Lopez E; St Claire J; Panigrahi GB; Hou C; Holloway K; Gillis T; Guide JR; Cohen PE; Li GM; Pearson CE; Daly MJ; Wheeler VC
    PLoS Genet; 2013 Oct; 9(10):e1003930. PubMed ID: 24204323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
    Tomé S; Manley K; Simard JP; Clark GW; Slean MM; Swami M; Shelbourne PF; Tillier ER; Monckton DG; Messer A; Pearson CE
    PLoS Genet; 2013; 9(2):e1003280. PubMed ID: 23468640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington's disease via insertion sequences of its catalytic domain.
    Chan KY; Li X; Ortega J; Gu L; Li GM
    J Biol Chem; 2021 Oct; 297(4):101144. PubMed ID: 34473992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells.
    Nakatani R; Nakamori M; Fujimura H; Mochizuki H; Takahashi MP
    Sci Rep; 2015 Jun; 5():11020. PubMed ID: 26047474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational distortions induced by periodically recurring A…A in d(CAG).d(CAG) provide stereochemical rationale for the trapping of MSH2.MSH3 in polyQ disorders.
    Ajjugal Y; Rathinavelan T
    Comput Struct Biotechnol J; 2021; 19():4447-4455. PubMed ID: 34471491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired.
    Panigrahi GB; Slean MM; Simard JP; Gileadi O; Pearson CE
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12593-8. PubMed ID: 20571119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.
    Halabi A; Ditch S; Wang J; Grabczyk E
    J Biol Chem; 2012 Aug; 287(35):29958-67. PubMed ID: 22787155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of somatic hypermutation: critical analysis of strand biased mutation signatures at A:T and G:C base pairs.
    Steele EJ
    Mol Immunol; 2009 Jan; 46(3):305-20. PubMed ID: 19062097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions.
    Keogh N; Chan KY; Li GM; Lahue RS
    Nucleic Acids Res; 2017 Sep; 45(17):10068-10078. PubMed ID: 28973443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human DNA polymerase-eta, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase.
    Franklin A; Milburn PJ; Blanden RV; Steele EJ
    Immunol Cell Biol; 2004 Apr; 82(2):219-25. PubMed ID: 15061777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells.
    Lin Y; Wilson JH
    DNA Repair (Amst); 2009 Aug; 8(8):878-85. PubMed ID: 19497791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease.
    Petruska J; Hartenstine MJ; Goodman MF
    J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSH2/MSH6 complex promotes error-free repair of AID-induced dU:G mispairs as well as error-prone hypermutation of A:T sites.
    Roa S; Li Z; Peled JU; Zhao C; Edelmann W; Scharff MD
    PLoS One; 2010 Jun; 5(6):e11182. PubMed ID: 20567595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.