These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32140717)

  • 1. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates.
    Çağlayan M
    Nucleic Acids Res; 2020 Apr; 48(7):3708-3721. PubMed ID: 32140717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications.
    Çağlayan M
    DNA Repair (Amst); 2020 Nov; 95():102945. PubMed ID: 32853828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate.
    Çağlayan M; Wilson SH
    Nat Commun; 2018 Oct; 9(1):4213. PubMed ID: 30310068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
    Tang Q; Çağlayan M
    J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.
    Çağlayan M; Wilson SH
    DNA Repair (Amst); 2015 Nov; 35():85-9. PubMed ID: 26466358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps.
    Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M
    J Biol Chem; 2024 Jun; 300(6):107355. PubMed ID: 38718860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure.
    Çaglayan M; Wilson SH
    J Radiat Res; 2017 Sep; 58(5):603-607. PubMed ID: 28992331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of DNA structure on DNA polymerase beta active site function: extension of mutagenic DNA intermediates.
    Beard WA; Shock DD; Wilson SH
    J Biol Chem; 2004 Jul; 279(30):31921-9. PubMed ID: 15145936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide.
    Freudenthal BD; Beard WA; Perera L; Shock DD; Kim T; Schlick T; Wilson SH
    Nature; 2015 Jan; 517(7536):635-9. PubMed ID: 25409153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair".
    Çağlayan M; Wilson SH
    DNA Repair (Amst); 2015 Dec; 36():86-90. PubMed ID: 26596511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis.
    Brown JA; Pack LR; Sanman LE; Suo Z
    DNA Repair (Amst); 2011 Jan; 10(1):24-33. PubMed ID: 20961817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XRCC1-DNA polymerase beta interaction is required for efficient base excision repair.
    Dianova II; Sleeth KM; Allinson SL; Parsons JL; Breslin C; Caldecott KW; Dianov GL
    Nucleic Acids Res; 2004; 32(8):2550-5. PubMed ID: 15141024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of DNA ligase III and XRCC1 in regulating the switch between short patch and long patch BER.
    Petermann E; Keil C; Oei SL
    DNA Repair (Amst); 2006 May; 5(5):544-55. PubMed ID: 16442856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps.
    Srivastava DK; Berg BJ; Prasad R; Molina JT; Beard WA; Tomkinson AE; Wilson SH
    J Biol Chem; 1998 Aug; 273(33):21203-9. PubMed ID: 9694877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerase beta promotes recruitment of DNA ligase III alpha-XRCC1 to sites of base excision repair.
    Parsons JL; Dianova II; Allinson SL; Dianov GL
    Biochemistry; 2005 Aug; 44(31):10613-9. PubMed ID: 16060670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway.
    Gulkis M; Martinez E; Almohdar D; Çağlayan M
    Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Çağlayan M; Wilson SH
    Bio Protoc; 2017 Jun; 7(12):. PubMed ID: 28835905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.