These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32140851)

  • 1. The fate of the main naturally occurring radionuclides in mussels (Mytilus edulis) and their radiological impact on human beings.
    Jia G; Torri G; Magro L
    Environ Monit Assess; 2020 Mar; 192(4):217. PubMed ID: 32140851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentrations of 238U, 234U, 235U, 232Th, 230Th, 228Th, 226Ra, 228Ra, 224Ra, 210Po, 210Pb and 212Pb in drinking water in Italy: reconciling safety standards based on measurements of gross alpha and beta.
    Jia G; Torri G; Magro L
    J Environ Radioact; 2009 Nov; 100(11):941-9. PubMed ID: 19635638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioactivity concentrations in mussel (Mytilus galloprovincialis) of Turkish Sea coast and contribution of ²¹⁰Po to the radiation dose.
    Kılıç Ö; Belivermiş M; Cotuk Y; Topçuoğlu S
    Mar Pollut Bull; 2014 Mar; 80(1-2):325-9. PubMed ID: 24398417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radioactivity levels in plant samples in Tulkarem district, Palestine and its impact on human health.
    Thabayneh KM; Jazzar MM
    Radiat Prot Dosimetry; 2013; 153(4):467-74. PubMed ID: 22798274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical distributions of natural radionuclides in surface soils and sediments impacted by lead-zinc mining activity.
    Wang Q; Wang H; Ma Y; Wang J; Su W; Xiao E; Du J; Xiao T; Zhong Q
    Ecotoxicol Environ Saf; 2023 Sep; 263():115210. PubMed ID: 37418943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiological impacts of phosphogypsum.
    Al Attar L; Al-Oudat M; Kanakri S; Budeir Y; Khalily H; Al Hamwi A
    J Environ Manage; 2011 Sep; 92(9):2151-8. PubMed ID: 21530064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (226)Ra, (232)Th and (40)K contents in soil samples from Garhwal Himalaya, India, and its radiological implications.
    Ramola RC; Gusain GS; Badoni M; Prasad Y; Prasad G; Ramachandran TV
    J Radiol Prot; 2008 Sep; 28(3):379-85. PubMed ID: 18714132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radioactivity levels in mussels and sediments of the Golden Horn by the Bosphorus Strait, Marmara Sea.
    Kılıç Ö; Belivermiş M; Gözel F; Carvalho FP
    Mar Pollut Bull; 2014 Sep; 86(1-2):555-561. PubMed ID: 25023437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical relationship between activity concentrations of radionuclides
    Alomari AH; Saleh MA; Hashim S; Alsayaheen A; Abukashabeh A
    Isotopes Environ Health Stud; 2019 May; 55(2):211-226. PubMed ID: 30789050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of annual effective dose due to ingestion of natural radionuclides in foodstuffs and water at a proposed uranium mining site in India.
    Giri S; Jha VN; Singh G; Tripathi RM
    Int J Radiat Biol; 2013 Dec; 89(12):1071-8. PubMed ID: 23786151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the activity level and radiological impacts of naturally occurring radionuclides in blast furnace slag.
    Uğur FA; Turhan S; Sahan H; Sahan M; Gören E; Gezer F; Yeğingil Z
    Radiat Prot Dosimetry; 2013; 153(4):502-8. PubMed ID: 22826355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental evaluation of radioactivity levels and associated radiation hazards in groundwater around the WIPP site.
    He R; Liaw S; Zhou M; Zhou XD; Luo H
    Ecotoxicol Environ Saf; 2022 Sep; 242():113849. PubMed ID: 35809394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of naturally occurring radionuclides in geothermal samples and assessment of radiological risks and radiation doses.
    Parmaksiz A
    Radiat Prot Dosimetry; 2013 Dec; 157(4):585-93. PubMed ID: 23847323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiological hazards due to naturally occurring radionuclides in the selected building materials used for the construction of dwellings in four districts of the Punjab Province, Pakistan.
    Rahman SU; Rafique M; Jabbar A; Matiullah
    Radiat Prot Dosimetry; 2013 Mar; 153(3):352-60. PubMed ID: 22798275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impact of natural radionuclides from a coal-fired power plant in Spain.
    Charro E; Peña V
    Radiat Prot Dosimetry; 2013; 153(4):485-95. PubMed ID: 22807496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and transport of radionuclides in a boreal mire--assessing past, present and future accumulation of uranium, thorium and radium.
    Lidman F; Ramebäck H; Bengtsson Å; Laudon H
    J Environ Radioact; 2013 Jul; 121():87-97. PubMed ID: 22832231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiochemical Characterization of Algae Products Commercialized for Human Consumption.
    Desideri D; Cantaluppi C; Ceccotto F; Meli MA; Roselli C; Feduzi L
    Health Phys; 2016 Sep; 111(3):256-64. PubMed ID: 27472751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biota Dose Assessment of Small Rodents Sampled Near Breccia Pipe Uranium Mines in the Grand Canyon Watershed.
    Minter KM; Jannik GT; Hinck JE; Cleveland D; Kubilius WP; Kuhne WW
    Health Phys; 2019 Jul; 117(1):20-27. PubMed ID: 30889103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya, India.
    Rautela BS; Yadav M; Bourai AA; Joshi V; Gusain GS; Ramola RC
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):58-61. PubMed ID: 22908360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant uptake of
    Skoko B; Marović G; Babić D; Šoštarić M; Jukić M
    J Environ Radioact; 2017 Jun; 172():113-121. PubMed ID: 28342343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.