BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32140907)

  • 1. Systematic genome editing of the genes spanning an entire chromosome by CRISPR/Cas9 in a vertebrate-zebrafish (Danio rerio).
    Gong Y; Yang B; Chen W
    Sci China Life Sci; 2020 Jul; 63(7):1096-1097. PubMed ID: 32140907
    [No Abstract]   [Full Text] [Related]  

  • 2. Generation of Functional Genetic Study Models in Zebrafish Using CRISPR-Cas9.
    Carmona-Aldana F; Nuñez-Martinez HN; Peralta-Alvarez CA; Tapia-Urzua G; Recillas-Targa F
    Methods Mol Biol; 2021; 2174():255-262. PubMed ID: 32813255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient genome editing using modified Cas9 proteins in zebrafish.
    Dorner L; Stratmann B; Bader L; Podobnik M; Irion U
    Biol Open; 2024 Apr; 13(4):. PubMed ID: 38545958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rock paper scissors: CRISPR/Cas9-mediated interference with geminiviruses in plants.
    Yang X; Zhou H; Zhou X
    Sci China Life Sci; 2019 Oct; 62(10):1389-1391. PubMed ID: 31571024
    [No Abstract]   [Full Text] [Related]  

  • 11. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
    Raj B; Gagnon JA; Schier AF
    Nat Protoc; 2018 Nov; 13(11):2685-2713. PubMed ID: 30353175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable base editing in zebrafish using a modified CRISPR-Cas9 system.
    Qin W; Lu X; Lin S
    Methods; 2018 Nov; 150():19-23. PubMed ID: 30076894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo analysis of renal epithelial cells in zebrafish.
    Li Y; Xu W; Jerman S; Sun Z
    Methods Cell Biol; 2019; 154():163-181. PubMed ID: 31493817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic Analyses Reveal Minimal Impact of the CRISPR-Cas9 Nuclease on Cultured Human Cells.
    Qiang J; Ma Z; Xie X; Shi L; Geng Y; Hu J; Liu R; Liu N; Zhang Y
    J Proteome Res; 2019 Mar; 18(3):1054-1063. PubMed ID: 30672298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis.
    McKinley KL
    Methods Cell Biol; 2018; 144():75-105. PubMed ID: 29804684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.