These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32141296)

  • 1. Thermodynamics of Transition Metal Ion Binding to Proteins.
    Song LF; Sengupta A; Merz KM
    J Am Chem Soc; 2020 Apr; 142(13):6365-6374. PubMed ID: 32141296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies.
    Clugston SL; Yajima R; Honek JF
    Biochem J; 2004 Jan; 377(Pt 2):309-16. PubMed ID: 14556652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Structural Flexibility of Metalloproteins Regulates Reactivity of Transition Metal Ion in the Protein Core: An Experimental Study Using Thiol-subtilisin as a Model Protein.
    Matsuo T; Kono T; Shobu I; Ishida M; Gonda K; Hirota S
    Chemistry; 2018 Feb; 24(11):2767-2775. PubMed ID: 29282778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "metallo-specific" response of proteins: a perspective based on the Escherichia coli transcriptional regulator NikR.
    Wang SC; Dias AV; Zamble DB
    Dalton Trans; 2009 Apr; (14):2459-66. PubMed ID: 19319388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors.
    Finney LA; O'Halloran TV
    Science; 2003 May; 300(5621):931-6. PubMed ID: 12738850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB.
    Dias AV; Mulvihill CM; Leach MR; Pickering IJ; George GN; Zamble DB
    Biochemistry; 2008 Nov; 47(46):11981-91. PubMed ID: 18942856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An XAS investigation of product and inhibitor complexes of Ni-containing GlxI from Escherichia coli: mechanistic implications.
    Davidson G; Clugston SL; Honek JF; Maroney MJ
    Biochemistry; 2001 Apr; 40(15):4569-82. PubMed ID: 11294624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between group IIb divalent transition-metal cations and 3-mercaptopropionic acid: a computational and topological perspective.
    Bagchi S; Mandal D; Ghosh D; Das AK
    J Phys Chem A; 2013 Feb; 117(7):1601-13. PubMed ID: 23330972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force field independent metal parameters using a nonbonded dummy model.
    Duarte F; Bauer P; Barrozo A; Amrein BA; Purg M; Aqvist J; Kamerlin SC
    J Phys Chem B; 2014 Apr; 118(16):4351-62. PubMed ID: 24670003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium Studies of Designed Metalloproteins.
    Gibney BR
    Methods Enzymol; 2016; 580():417-38. PubMed ID: 27586343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation.
    He MM; Clugston SL; Honek JF; Matthews BW
    Biochemistry; 2000 Aug; 39(30):8719-27. PubMed ID: 10913283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermodynamics of protein interactions with essential first row transition metals.
    Bou-Abdallah F; Giffune TR
    Biochim Biophys Acta; 2016 May; 1860(5):879-891. PubMed ID: 26569121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase I.
    Su Z; Sukdeo N; Honek JF
    Biochemistry; 2008 Dec; 47(50):13232-41. PubMed ID: 19053281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1.
    Babu CS; Dudev T; Casareno R; Cowan JA; Lim C
    J Am Chem Soc; 2003 Aug; 125(31):9318-28. PubMed ID: 12889961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient, step-economical strategy for the design of functional metalloproteins.
    Rittle J; Field MJ; Green MT; Tezcan FA
    Nat Chem; 2019 May; 11(5):434-441. PubMed ID: 30778140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.