These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32141296)

  • 21. Aberrant coordination geometries discovered in the most abundant metalloproteins.
    Yao S; Flight RM; Rouchka EC; Moseley HN
    Proteins; 2017 May; 85(5):885-907. PubMed ID: 28142195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational redesign of metalloenzymes for catalyzing new reactions.
    Greisen P; Khare SD
    Methods Mol Biol; 2014; 1216():265-73. PubMed ID: 25213421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein.
    Outten CE; Tobin DA; Penner-Hahn JE; O'Halloran TV
    Biochemistry; 2001 Sep; 40(35):10417-23. PubMed ID: 11523983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family.
    Chirgadze YN; Boshkova EA; Battaile KP; Mendes VG; Lam R; Chan TSY; Romanov V; Pai EF; Chirgadze NY
    J Biomol Struct Dyn; 2018 Feb; 36(2):376-386. PubMed ID: 28034013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR.
    Changela A; Chen K; Xue Y; Holschen J; Outten CE; O'Halloran TV; Mondragón A
    Science; 2003 Sep; 301(5638):1383-7. PubMed ID: 12958362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution.
    Yepes D; Seidel R; Winter B; Blumberger J; Jaque P
    J Phys Chem B; 2014 Jun; 118(24):6850-63. PubMed ID: 24902000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity.
    Lachenmann MJ; Ladbury JE; Dong J; Huang K; Carey P; Weiss MA
    Biochemistry; 2004 Nov; 43(44):13910-25. PubMed ID: 15518539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A superprotein triangle driven by nickel(II) coordination: exploiting non-natural metal ligands in protein self-assembly.
    Radford RJ; Tezcan FA
    J Am Chem Soc; 2009 Jul; 131(26):9136-7. PubMed ID: 19527025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metalloregulatory proteins: metal selectivity and allosteric switching.
    Reyes-Caballero H; Campanello GC; Giedroc DP
    Biophys Chem; 2011 Jul; 156(2-3):103-14. PubMed ID: 21511390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions.
    Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A
    J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal Ion Capture Mechanism of a Copper Metallochaperone.
    Chakravorty DK; Li P; Tran TT; Bayse CA; Merz KM
    Biochemistry; 2016 Jan; 55(3):501-9. PubMed ID: 26690586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing determinants of the metal ion selectivity in carbonic anhydrase using mutagenesis.
    McCall KA; Fierke CA
    Biochemistry; 2004 Apr; 43(13):3979-86. PubMed ID: 15049705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural transitions in ion coordination driven by changes in competition for ligand binding.
    Varma S; Rempe SB
    J Am Chem Soc; 2008 Nov; 130(46):15405-19. PubMed ID: 18954053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GPDOCK: highly accurate docking strategy for metalloproteins based on geometric probability.
    Wang K
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies.
    Gogoi P; Chandravanshi M; Mandal SK; Srivastava A; Kanaujia SP
    J Biomol Struct Dyn; 2016 Jul; 34(7):1470-85. PubMed ID: 26248730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular interactions between functional metal complexes and proteins.
    Davies CL; Dux EL; Duhme-Klair AK
    Dalton Trans; 2009 Dec; (46):10141-54. PubMed ID: 19921045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations.
    Creighton DJ; Hamilton DS
    Arch Biochem Biophys; 2001 Mar; 387(1):1-10. PubMed ID: 11368170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.