BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 32141467)

  • 21. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives.
    Hafner J; Payne J; MohammadiPeyhani H; Hatzimanikatis V; Smolke C
    Nat Commun; 2021 Mar; 12(1):1760. PubMed ID: 33741955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aspidosperma species: A review of their chemistry and biological activities.
    de Almeida VL; Silva CG; Silva AF; Campana PRV; Foubert K; Lopes JCD; Pieters L
    J Ethnopharmacol; 2019 Mar; 231():125-140. PubMed ID: 30395977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and trafficking of alkaloid biosynthetic enzymes.
    Facchini PJ; St-Pierre B
    Curr Opin Plant Biol; 2005 Dec; 8(6):657-66. PubMed ID: 16182601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons.
    Hu Z; Ye Y; Zhang Y
    Nat Prod Rep; 2021 Oct; 38(10):1775-1793. PubMed ID: 33650608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organocatalytic enantioselective Pictet-Spengler approach to biologically relevant 1-benzyl-1,2,3,4-tetrahydroisoquinoline alkaloids.
    Ruiz-Olalla A; Würdemann MA; Wanner MJ; Ingemann S; van Maarseveen JH; Hiemstra H
    J Org Chem; 2015 May; 80(10):5125-32. PubMed ID: 25909585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical synthesis of Aspidosperma alkaloids inspired by the reverse of the biosynthesis of the rhazinilam family of natural products.
    McMurray L; Beck EM; Gaunt MJ
    Angew Chem Int Ed Engl; 2012 Sep; 51(37):9288-91. PubMed ID: 22915344
    [No Abstract]   [Full Text] [Related]  

  • 27. New Strategies in the Efficient Total Syntheses of Polycyclic Natural Products.
    Liu W; Hong B; Wang J; Lei X
    Acc Chem Res; 2020 Nov; 53(11):2569-2586. PubMed ID: 33136373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Total synthesis of biologically active natural products based on highly selective synthetic methodologies.
    Hatakeyama S
    Chem Pharm Bull (Tokyo); 2014; 62(11):1045-61. PubMed ID: 25366310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A metabolic regulon reveals early and late acting enzymes in neuroactive Lycopodium alkaloid biosynthesis.
    Nett RS; Dho Y; Low YY; Sattely ES
    Proc Natl Acad Sci U S A; 2021 Jun; 118(24):. PubMed ID: 34112718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Pictet-Spengler Reaction Updates Its Habits.
    Calcaterra A; Mangiardi L; Delle Monache G; Quaglio D; Balducci S; Berardozzi S; Iazzetti A; Franzini R; Botta B; Ghirga F
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme evolution in fungal indole alkaloid biosynthesis.
    Fraley AE; Sherman DH
    FEBS J; 2020 Apr; 287(7):1381-1402. PubMed ID: 32118354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic advances in plant natural product enzymes.
    Usera AR; O'Connor SE
    Curr Opin Chem Biol; 2009 Oct; 13(4):492-8. PubMed ID: 19632140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate.
    Tatsis EC; Carqueijeiro I; Dugé de Bernonville T; Franke J; Dang TT; Oudin A; Lanoue A; Lafontaine F; Stavrinides AK; Clastre M; Courdavault V; O'Connor SE
    Nat Commun; 2017 Aug; 8(1):316. PubMed ID: 28827772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum.
    Gao X; Chooi YH; Ames BD; Wang P; Walsh CT; Tang Y
    J Am Chem Soc; 2011 Mar; 133(8):2729-41. PubMed ID: 21299212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids.
    Schimming O; Challinor VL; Tobias NJ; Adihou H; Grün P; Pöschel L; Richter C; Schwalbe H; Bode HB
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12702-5. PubMed ID: 26465655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research progress of Pictet-Spenglerases].
    Xie Y; Chen Q; Zhang S; Shen C
    Sheng Wu Gong Cheng Xue Bao; 2020 Oct; 36(10):2001-2016. PubMed ID: 33169566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The iboga enigma: the chemistry and neuropharmacology of iboga alkaloids and related analogs.
    Iyer RN; Favela D; Zhang G; Olson DE
    Nat Prod Rep; 2021 Mar; 38(2):307-329. PubMed ID: 32794540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids.
    Pyne ME; Kevvai K; Grewal PS; Narcross L; Choi B; Bourgeois L; Dueber JE; Martin VJJ
    Nat Commun; 2020 Jul; 11(1):3337. PubMed ID: 32620756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Total Syntheses of Lycopodium and Monoterpenoid Indole Alkaloids Based on Biosynthesis-Inspired Strategies.
    Takayama H
    Chem Pharm Bull (Tokyo); 2020; 68(2):103-116. PubMed ID: 32009077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.