BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32141496)

  • 41. Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase.
    Lawson DM; Stevenson CE; Andrew CR; Eady RR
    EMBO J; 2000 Nov; 19(21):5661-71. PubMed ID: 11060017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction.
    Gong W; Hao B; Mansy SS; Gonzalez G; Gilles-Gonzalez MA; Chan MK
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15177-82. PubMed ID: 9860942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asp(344) and Thr(345) are critical for cation exchange mediated by NhaD, Na(+)/H(+) antiporter of Vibrio cholerae.
    Ostroumov E; Dzioba J; Loewen PC; Dibrov P
    Biochim Biophys Acta; 2002 Aug; 1564(1):99-106. PubMed ID: 12101001
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR.
    Giardina G; Rinaldo S; Johnson KA; Di Matteo A; Brunori M; Cutruzzolà F
    J Mol Biol; 2008 May; 378(5):1002-15. PubMed ID: 18420222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sodium and proton coupling in the conformational cycle of a MATE antiporter from
    Claxton DP; Jagessar KL; Steed PR; Stein RA; Mchaourab HS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6182-E6190. PubMed ID: 29915043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A heme degradation enzyme, HutZ, from Vibrio cholerae.
    Uchida T; Sekine Y; Matsui T; Ikeda-Saito M; Ishimori K
    Chem Commun (Camb); 2012 Jul; 48(53):6741-3. PubMed ID: 22627893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.
    Rao M; Smith BC; Marletta MA
    mBio; 2015 May; 6(3):e00206-15. PubMed ID: 25944856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering of the heme pocket of an H-NOX domain for direct cyanide detection and quantification.
    Dai Z; Boon EM
    J Am Chem Soc; 2010 Aug; 132(33):11496-503. PubMed ID: 20684546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure of apo and ligand bound vibrio cholerae ribokinase (Vc-RK): role of monovalent cation induced activation and structural flexibility in sugar phosphorylation.
    Paul R; Patra MD; Sen U
    Adv Exp Med Biol; 2015; 842():293-307. PubMed ID: 25408351
    [No Abstract]   [Full Text] [Related]  

  • 51. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases.
    Stuehr DJ; Wei CC; Wang Z; Hille R
    Dalton Trans; 2005 Nov; (21):3427-35. PubMed ID: 16234921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition.
    Capece L; Estrin DA; Marti MA
    Biochemistry; 2008 Sep; 47(36):9416-27. PubMed ID: 18702531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins.
    Henderson DP; Payne SM
    J Bacteriol; 1994 Jun; 176(11):3269-77. PubMed ID: 8195082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling conformational flexibility of an O₂-binding H-NOX domain.
    Weinert EE; Phillips-Piro CM; Tran R; Mathies RA; Marletta MA
    Biochemistry; 2011 Aug; 50(32):6832-40. PubMed ID: 21721586
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae.
    Abendroth J; Murphy P; Sandkvist M; Bagdasarian M; Hol WG
    J Mol Biol; 2005 May; 348(4):845-55. PubMed ID: 15843017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer.
    Fonseca BM; Paquete CM; Louro RO
    J Inorg Biochem; 2014 Apr; 133():104-9. PubMed ID: 24268904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.
    Ma X; Sayed N; Beuve A; van den Akker F
    EMBO J; 2007 Jan; 26(2):578-88. PubMed ID: 17215864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reaction intermediates in the heme degradation reaction by HutZ from Vibrio cholerae.
    Uchida T; Sekine Y; Dojun N; Lewis-Ballester A; Ishigami I; Matsui T; Yeh SR; Ishimori K
    Dalton Trans; 2017 Jun; 46(25):8104-8109. PubMed ID: 28607990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi.
    Liu N; Xu Y; Hossain S; Huang N; Coursolle D; Gralnick JA; Boon EM
    Biochemistry; 2012 Mar; 51(10):2087-99. PubMed ID: 22360279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.