These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 3214155)
1. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Gibson GR; Cummings JH; Macfarlane GT Appl Environ Microbiol; 1988 Nov; 54(11):2750-5. PubMed ID: 3214155 [TBL] [Abstract][Full Text] [Related]
2. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. Gibson GR; Macfarlane GT; Cummings JH J Appl Bacteriol; 1988 Aug; 65(2):103-11. PubMed ID: 3204069 [TBL] [Abstract][Full Text] [Related]
3. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Chen C; Shen Y; An D; Voordouw G Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297 [TBL] [Abstract][Full Text] [Related]
4. Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. Macfarlane GT; Hay S; Gibson GR J Appl Bacteriol; 1989 May; 66(5):407-17. PubMed ID: 2666379 [TBL] [Abstract][Full Text] [Related]
5. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. Gibson GR; Cummings JH; Macfarlane GT J Appl Bacteriol; 1988 Sep; 65(3):241-7. PubMed ID: 2852666 [TBL] [Abstract][Full Text] [Related]
6. Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442 [TBL] [Abstract][Full Text] [Related]
7. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Wu WM; Hickey RF; Zeikus JG Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921 [TBL] [Abstract][Full Text] [Related]
8. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria. Strocchi A; Furne JK; Ellis CJ; Levitt MD Gut; 1991 Dec; 32(12):1498-501. PubMed ID: 1773956 [TBL] [Abstract][Full Text] [Related]
9. Use of metabolic inhibitors to study H2 consumption by human feces: evidence for a pathway other than methanogenesis and sulfate reduction. Strocchi A; Ellis CJ; Levitt MD J Lab Clin Med; 1993 Feb; 121(2):320-7. PubMed ID: 8433043 [TBL] [Abstract][Full Text] [Related]
10. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Zhao Y; Ren N; Wang A Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751 [TBL] [Abstract][Full Text] [Related]
11. Competitive dynamics of anaerobes during long-term biological sulfate reduction process in a UASB reactor. Chen H; Wu J; Liu B; Li YY; Yasui H Bioresour Technol; 2019 May; 280():173-182. PubMed ID: 30771572 [TBL] [Abstract][Full Text] [Related]
12. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
13. Effects of sulfate on lactate and C2-, C3- volatile fatty acid anaerobic degradation by a mixed microbial culture. Qatibi AI; Bories A; Garcia JL Antonie Van Leeuwenhoek; 1990 Nov; 58(4):241-8. PubMed ID: 2082810 [TBL] [Abstract][Full Text] [Related]
14. Sulphate reduction and methanogenesis in the ovine rumen and porcine caecum: a comparison of two microbial ecosystems. Ushida K; Ohashi Y; Tokura M; Miyazaki K; Kojima Y Dtsch Tierarztl Wochenschr; 1995 Apr; 102(4):154-6. PubMed ID: 7555693 [TBL] [Abstract][Full Text] [Related]
15. Implications of volatile fatty acid profile on the metabolic pathway during continuous sulfate reduction. Bertolino SM; Rodrigues IC; Guerra-Sá R; Aquino SF; Leão VA J Environ Manage; 2012 Jul; 103():15-23. PubMed ID: 22459067 [TBL] [Abstract][Full Text] [Related]
16. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247 [TBL] [Abstract][Full Text] [Related]
17. Comparison of fermentation reactions in different regions of the human colon. Macfarlane GT; Gibson GR; Cummings JH J Appl Bacteriol; 1992 Jan; 72(1):57-64. PubMed ID: 1541601 [TBL] [Abstract][Full Text] [Related]
18. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture. Wong BT; Lee DJ Bioresour Technol; 2011 Jun; 102(12):6673-9. PubMed ID: 21507619 [TBL] [Abstract][Full Text] [Related]
19. Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Van Kuijk BL; Stams AJ Antonie Van Leeuwenhoek; 1995 Nov; 68(4):293-6. PubMed ID: 8821784 [TBL] [Abstract][Full Text] [Related]
20. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors. Celis-García LB; Razo-Flores E; Monroy O Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]