BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 321416)

  • 1. Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants.
    Pertierra AG; Cooper RA
    J Bacteriol; 1977 Mar; 129(3):1208-14. PubMed ID: 321416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli.
    Roehl RA; Vinopal RT
    J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli.
    Meza E; Becker J; Bolivar F; Gosset G; Wittmann C
    Microb Cell Fact; 2012 Sep; 11():127. PubMed ID: 22973998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli.
    Long CP; Au J; Sandoval NR; Gebreselassie NA; Antoniewicz MR
    Nat Commun; 2017 Jan; 8():14316. PubMed ID: 28128209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle.
    Patnaik R; Roof WD; Young RF; Liao JC
    J Bacteriol; 1992 Dec; 174(23):7527-32. PubMed ID: 1332936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate uptake by Escherichia coli.
    Kornberg HL
    J Cell Physiol; 1976 Dec; 89(4):545-9. PubMed ID: 795813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli.
    Chen R; Hatzimanikatis V; Yap WM; Postma PW; Bailey JE
    Biotechnol Prog; 1997; 13(6):768-75. PubMed ID: 9413135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions.
    Zhao C; Lin Z; Dong H; Zhang Y; Li Y
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR
    J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract]   [Full Text] [Related]  

  • 13. Formation and utilization of PEP in microbial carbohydrate transport.
    Kornberg HL
    Curr Top Cell Regul; 1981; 18():313-27. PubMed ID: 6268363
    [No Abstract]   [Full Text] [Related]  

  • 14. Probable role of a membrane-bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars.
    Ghosh S; Ghosh D
    Indian J Biochem; 1968 Jun; 5(2):49-52. PubMed ID: 4239922
    [No Abstract]   [Full Text] [Related]  

  • 15. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and regulatory properties of pyruvate kinase from Veillonella parvula.
    Ng SK; Hamilton IR
    J Bacteriol; 1975 Jun; 122(3):1274-82. PubMed ID: 238944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.
    Liu L; Chen S; Wu J
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic suppression of phosphofructokinase mutations in Escherichia coli by constitutive expression of the glyoxylate shunt.
    Vinopal RT; Fraenkel DG
    J Bacteriol; 1974 Jun; 118(3):1090-100. PubMed ID: 4275310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation.
    Postma PW; Stock JB
    J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of galactose into Escherichia coli by facilitated diffusion.
    Kornberg HL; Riordan C
    J Gen Microbiol; 1976 May; 94(1):75-89. PubMed ID: 778334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.