These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32142085)
41. Influence of the cell wall on ciprofloxacin susceptibility in selected wild-type Gram-negative and Gram-positive bacteria. Berlanga M; Montero MT; Hernández-Borrell J; Viñas M Int J Antimicrob Agents; 2004 Jun; 23(6):627-30. PubMed ID: 15194135 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of in-vitro antimicrobial activity of Artemisia apiacea H. and Scutellaria baicalensis G. extracts. Trinh H; Yoo Y; Won KH; Ngo HTT; Yang JE; Cho JG; Lee SW; Kim KY; Yi TH J Med Microbiol; 2018 Apr; 67(4):489-495. PubMed ID: 29504922 [TBL] [Abstract][Full Text] [Related]
43. Bioactive Principles and Potentiality of Hot Methanolic Extract of the Leaves from Sultan MH; Zuwaiel AA; Moni SS; Alshahrani S; Alqahtani SS; Madkhali O; Elmobark ME Curr Pharm Biotechnol; 2020; 21(15):1711-1721. PubMed ID: 32988347 [TBL] [Abstract][Full Text] [Related]
44. Isolation and characterisation of a novel antibacterial peptide from a native swine intestinal tract-derived bacterium. Xin H; Ji S; Peng J; Han P; An X; Wang S; Cao B Int J Antimicrob Agents; 2017 Apr; 49(4):427-436. PubMed ID: 28254375 [TBL] [Abstract][Full Text] [Related]
45. Near-Infrared-Controlled Nanoplatform Exploiting Photothermal Promotion of Peroxidase-like and OXD-like Activities for Potent Antibacterial and Anti-biofilm Therapies. Xu M; Hu Y; Xiao Y; Zhang Y; Sun K; Wu T; Lv N; Wang W; Ding W; Li F; Qiu B; Li J ACS Appl Mater Interfaces; 2020 Nov; 12(45):50260-50274. PubMed ID: 33108154 [TBL] [Abstract][Full Text] [Related]
46. Essential oil variation in the populations of Artemisia spicigera from northwest of Iran: chemical composition and antibacterial activity. Chehregani A; Atri M; Yousefi S; Albooyeh Z; Mohsenzadeh F Pharm Biol; 2013 Feb; 51(2):246-52. PubMed ID: 23126238 [TBL] [Abstract][Full Text] [Related]
47. Carbon dots with positive surface charge from tartaric acid and m-aminophenol for selective killing of Gram-positive bacteria. Wang H; Lu F; Ma C; Ma Y; Zhang M; Wang B; Zhang Y; Liu Y; Huang H; Kang Z J Mater Chem B; 2021 Jan; 9(1):125-130. PubMed ID: 33225328 [TBL] [Abstract][Full Text] [Related]
48. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Hao X; Huang L; Zhao C; Chen S; Lin W; Lin Y; Zhang L; Sun A; Miao C; Lin X; Chen M; Weng S Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111971. PubMed ID: 33812599 [TBL] [Abstract][Full Text] [Related]
49. Synthesis and antibacterial activity of novel enolphosphate derivatives. Grison C; Barthes N; Finance C; Duval RE Bioorg Chem; 2010 Oct; 38(5):218-23. PubMed ID: 20655569 [TBL] [Abstract][Full Text] [Related]
50. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Galdiero E; Siciliano A; Maselli V; Gesuele R; Guida M; Fulgione D; Galdiero S; Lombardi L; Falanga A Int J Nanomedicine; 2016; 11():4199-211. PubMed ID: 27616887 [TBL] [Abstract][Full Text] [Related]
51. [Relationship between antibacterial activity of aloe and its anthaquinone compounds]. Tian B; Hua YJ; Ma XQ; Wang GL Zhongguo Zhong Yao Za Zhi; 2003 Nov; 28(11):1034-7. PubMed ID: 15615409 [TBL] [Abstract][Full Text] [Related]
52. Green synthesis of fluorescent carbon dots with antibacterial activity and their application in Atlantic mackerel ( Lin R; Cheng S; Tan M Food Funct; 2022 Feb; 13(4):2098-2108. PubMed ID: 35107471 [TBL] [Abstract][Full Text] [Related]
53. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. Sviridova E; Barras A; Addad A; Plotnikov E; Di Martino A; Deresmes D; Nikiforova K; Trusova M; Szunerits S; Guselnikova O; Postnikov P; Boukherroub R Biomater Adv; 2022 Mar; 134():112697. PubMed ID: 35581073 [TBL] [Abstract][Full Text] [Related]
54. A novel bactericidal small molecule, STK-35, and its derivative, STK-66, as antibacterial agents against Gram-negative pathogenic bacteria in vitro and in vivo. She P; Xu L; Liu Y; Liu S; Li Z; Li Y; Hussain Z; Wu Y Lett Appl Microbiol; 2022 Sep; 75(3):655-666. PubMed ID: 35218030 [TBL] [Abstract][Full Text] [Related]
55. Multi-Functional Carbon Dots from an Ayurvedic Medicinal Plant for Cancer Cell Bioimaging Applications. Naik GG; Alam MB; Pandey V; Mohapatra D; Dubey PK; Parmar AS; Sahu AN J Fluoresc; 2020 Mar; 30(2):407-418. PubMed ID: 32088852 [TBL] [Abstract][Full Text] [Related]
56. Selective Labeling and Growth Inhibition of Pseudomonas aeruginosa by Aminoguanidine Carbon Dots. Otis G; Bhattacharya S; Malka O; Kolusheva S; Bolel P; Porgador A; Jelinek R ACS Infect Dis; 2019 Feb; 5(2):292-302. PubMed ID: 30589261 [TBL] [Abstract][Full Text] [Related]
57. Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms. Li P; Liu S; Cao W; Zhang G; Yang X; Gong X; Xing X Chem Commun (Camb); 2020 Feb; 56(15):2316-2319. PubMed ID: 31990011 [TBL] [Abstract][Full Text] [Related]
58. Vanillin selectively modulates the action of antibiotics against resistant bacteria. Bezerra CF; Camilo CJ; do Nascimento Silva MK; de Freitas TS; Ribeiro-Filho J; Coutinho HDM Microb Pathog; 2017 Dec; 113():265-268. PubMed ID: 29107747 [TBL] [Abstract][Full Text] [Related]
59. Identification of Antibacterial Molecule(s) from Animals Living in Polluted Environments. Winnie FYM; Siddiqui R; Sagathevan K; Khan NA Curr Pharm Biotechnol; 2020; 21(5):425-437. PubMed ID: 31577204 [TBL] [Abstract][Full Text] [Related]
60. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Septama AW; Panichayupakaranant P Pharm Biol; 2016; 54(4):686-91. PubMed ID: 26427318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]