BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32142252)

  • 1. Submicrometer-Sized Roughness Suppresses Bacteria Adhesion.
    Encinas N; Yang CY; Geyer F; Kaltbeitzel A; Baumli P; Reinholz J; Mailänder V; Butt HJ; Vollmer D
    ACS Appl Mater Interfaces; 2020 May; 12(19):21192-21200. PubMed ID: 32142252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides.
    Zou Y; Lu K; Lin Y; Wu Y; Wang Y; Li L; Huang C; Zhang Y; Brash JL; Chen H; Yu Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45191-45200. PubMed ID: 34519474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material.
    Parra C; Dorta F; Jimenez E; Henríquez R; Ramírez C; Rojas R; Villalobos P
    J Nanobiotechnology; 2015 Nov; 13():82. PubMed ID: 26573588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro- and Nanopatterned Silk Substrates for Antifouling Applications.
    Tullii G; Donini S; Bossio C; Lodola F; Pasini M; Parisini E; Galeotti F; Antognazza MR
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5437-5446. PubMed ID: 31917532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics.
    Rajab FH; Liauw CM; Benson PS; Li L; Whitehead KA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():688-696. PubMed ID: 29032326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned surfaces with a peptide-based coating.
    Dolid A; Gomes LC; Mergulhão FJ; Reches M
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111365. PubMed ID: 33075739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion.
    Mu M; Liu S; DeFlorio W; Hao L; Wang X; Salazar KS; Taylor M; Castillo A; Cisneros-Zevallos L; Oh JK; Min Y; Akbulut M
    Langmuir; 2023 Apr; 39(15):5426-5439. PubMed ID: 37014907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces.
    Hsu LC; Fang J; Borca-Tasciuc DA; Worobo RW; Moraru CI
    Appl Environ Microbiol; 2013 Apr; 79(8):2703-12. PubMed ID: 23416997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale investigation on adhesion of E. coli to surface modified silicone using atomic force microscopy.
    Cao T; Tang H; Liang X; Wang A; Auner GW; Salley SO; Ng KY
    Biotechnol Bioeng; 2006 May; 94(1):167-76. PubMed ID: 16538682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties.
    Li M; Neoh KG; Xu LQ; Wang R; Kang ET; Lau T; Olszyna DP; Chiong E
    Langmuir; 2012 Nov; 28(47):16408-22. PubMed ID: 23121175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface.
    Manivasagam VK; Perumal G; Arora HS; Popat KC
    J Biomed Mater Res A; 2022 Jul; 110(7):1314-1328. PubMed ID: 35188338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Silver-Silicone-Nanofilament-Composite Material for Water Disinfection.
    Meier M; Suppiger A; Eberl L; Seeger S
    Small; 2017 Jan; 13(4):. PubMed ID: 27622297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial adhesion to glass and metal-oxide surfaces.
    Li B; Logan BE
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of nano-topography on bacterial attachment.
    Mitik-Dineva N; Wang J; Mocanasu RC; Stoddart PR; Crawford RJ; Ivanova EP
    Biotechnol J; 2008 Apr; 3(4):536-44. PubMed ID: 18246568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling nanoplatform for controlled attachment of
    Tavangar A; Premnath P; Tan B; Venkatakrishnan K
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38772388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion.
    Qin XH; Senturk B; Valentin J; Malheiro V; Fortunato G; Ren Q; Rottmar M; Maniura-Weber K
    Langmuir; 2019 Feb; 35(5):1882-1894. PubMed ID: 30153734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.
    Hwang GB; Page K; Patir A; Nair SP; Allan E; Parkin IP
    ACS Nano; 2018 Jun; 12(6):6050-6058. PubMed ID: 29792802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.
    Banerjee I; Pangule RC; Kane RS
    Adv Mater; 2011 Feb; 23(6):690-718. PubMed ID: 20886559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings.
    Zeng G; Ogaki R; Meyer RL
    Acta Biomater; 2015 Sep; 24():64-73. PubMed ID: 26093067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.