These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32142306)

  • 1. Quantum Rifling: Protecting a Qubit from Measurement Back Action.
    Szombati D; Gomez Frieiro A; Müller C; Jones T; Jerger M; Fedorov A
    Phys Rev Lett; 2020 Feb; 124(7):070401. PubMed ID: 32142306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Backaction from Electron Spins in a Gate-Defined GaAs Double Quantum dot Coupled to a Mesoscopic Nuclear Spin Bath.
    Bethke P; McNeil RPG; Ritzmann J; Botzem T; Ludwig A; Wieck AD; Bluhm H
    Phys Rev Lett; 2020 Jul; 125(4):047701. PubMed ID: 32794820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconducting-qubit readout via low-backaction electro-optic transduction.
    Delaney RD; Urmey MD; Mittal S; Brubaker BM; Kindem JM; Burns PS; Regal CA; Lehnert KW
    Nature; 2022 Jun; 606(7914):489-493. PubMed ID: 35705821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive readout for a superconducting flux qubit.
    Lupaşcu A; Verwijs CJ; Schouten RN; Harmans CJ; Mooij JE
    Phys Rev Lett; 2004 Oct; 93(17):177006. PubMed ID: 15525116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Qubit Measurement with a Nonreciprocal Microwave Amplifier.
    Lecocq F; Ranzani L; Peterson GA; Cicak K; Jin XY; Simmonds RW; Teufel JD; Aumentado J
    Phys Rev Lett; 2021 Jan; 126(2):020502. PubMed ID: 33512236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and Low-Backaction Quantum Measurement Using a Chip-Scale Detector.
    Rosenthal EI; Schneider CMF; Malnou M; Zhao Z; Leditzky F; Chapman BJ; Wustmann W; Ma X; Palken DA; Zanner MF; Vale LR; Hilton GC; Gao J; Smith G; Kirchmair G; Lehnert KW
    Phys Rev Lett; 2021 Mar; 126(9):090503. PubMed ID: 33750151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong tunable coupling between a superconducting charge and phase qubit.
    Fay A; Hoskinson E; Lecocq F; Lévy LP; Hekking FW; Guichard W; Buisson O
    Phys Rev Lett; 2008 May; 100(18):187003. PubMed ID: 18518410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling superconducting qubits via a cavity bus.
    Majer J; Chow JM; Gambetta JM; Koch J; Johnson BR; Schreier JA; Frunzio L; Schuster DI; Houck AA; Wallraff A; Blais A; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7161):443-7. PubMed ID: 17898763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial-measurement backaction and nonclassical weak values in a superconducting circuit.
    Groen JP; Ristè D; Tornberg L; Cramer J; de Groot PC; Picot T; Johansson G; DiCarlo L
    Phys Rev Lett; 2013 Aug; 111(9):090506. PubMed ID: 24033014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of a Single Qubit Gate.
    Stevens J; Szombati D; Maffei M; Elouard C; Assouly R; Cottet N; Dassonneville R; Ficheux Q; Zeppetzauer S; Bienfait A; Jordan AN; Auffèves A; Huard B
    Phys Rev Lett; 2022 Sep; 129(11):110601. PubMed ID: 36154409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Teleportation Between Discrete and Continuous Encodings of an Optical Qubit.
    Ulanov AE; Sychev D; Pushkina AA; Fedorov IA; Lvovsky AI
    Phys Rev Lett; 2017 Apr; 118(16):160501. PubMed ID: 28474950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits.
    Plantenberg JH; de Groot PC; Harmans CJ; Mooij JE
    Nature; 2007 Jun; 447(7146):836-9. PubMed ID: 17568742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal quantum gate with hybrid qubits in circuit quantum electrodynamics.
    Yang CP; Zheng ZF; Zhang Y
    Opt Lett; 2018 Dec; 43(23):5765-5768. PubMed ID: 30499988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum acoustics with superconducting qubits.
    Chu Y; Kharel P; Renninger WH; Burkhart LD; Frunzio L; Rakich PT; Schoelkopf RJ
    Science; 2017 Oct; 358(6360):199-202. PubMed ID: 28935771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity quantum electrodynamics with separate photon storage and qubit readout modes.
    Leek PJ; Baur M; Fink JM; Bianchetti R; Steffen L; Filipp S; Wallraff A
    Phys Rev Lett; 2010 Mar; 104(10):100504. PubMed ID: 20366408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and real-time compensation of qubit decoherence via machine learning.
    Mavadia S; Frey V; Sastrawan J; Dona S; Biercuk MJ
    Nat Commun; 2017 Jan; 8():14106. PubMed ID: 28090085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A programmable two-qubit quantum processor in silicon.
    Watson TF; Philips SGJ; Kawakami E; Ward DR; Scarlino P; Veldhorst M; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LMK
    Nature; 2018 Mar; 555(7698):633-637. PubMed ID: 29443962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction.
    Aassime A; Johansson G; Wendin G; Schoelkopf RJ; Delsing P
    Phys Rev Lett; 2001 Apr; 86(15):3376-9. PubMed ID: 11327974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realization of quantum error correction.
    Chiaverini J; Leibfried D; Schaetz T; Barrett MD; Blakestad RB; Britton J; Itano WM; Jost JD; Knill E; Langer C; Ozeri R; Wineland DJ
    Nature; 2004 Dec; 432(7017):602-5. PubMed ID: 15577904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the trade-off between fast control and long lifetime of a superconducting qubit.
    Kono S; Koshino K; Lachance-Quirion D; van Loo AF; Tabuchi Y; Noguchi A; Nakamura Y
    Nat Commun; 2020 Jul; 11(1):3683. PubMed ID: 32703942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.