These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32142312)

  • 21. Glasses denser than the supercooled liquid.
    Jin Y; Zhang A; Wolf SE; Govind S; Moore AR; Zhernenkov M; Freychet G; Arabi Shamsabadi A; Fakhraai Z
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34330828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation of stable glasses into supercooled liquids: growth fronts and anomalously fast liquid diffusion.
    Swallen SF; Windsor K; McMahon RJ; Ediger MD; Mates TE
    J Phys Chem B; 2010 Mar; 114(8):2635-43. PubMed ID: 20141127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of growth front velocity in ultrastable glasses of indomethacin over a wide temperature interval.
    Rodríguez-Tinoco C; Gonzalez-Silveira M; Ràfols-Ribé J; Lopeandía AF; Clavaguera-Mora MT; Rodríguez-Viejo J
    J Phys Chem B; 2014 Sep; 118(36):10795-801. PubMed ID: 25105838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.
    Kearns KL; Swallen SF; Ediger MD; Sun Y; Yu L
    J Phys Chem B; 2009 Feb; 113(6):1579-86. PubMed ID: 19154147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular view of the isothermal transformation of a stable glass to a liquid.
    Swallen SF; Kearns KL; Satija S; Traynor K; McMahon RJ; Ediger MD
    J Chem Phys; 2008 Jun; 128(21):214514. PubMed ID: 18537440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equilibrium ultrastable glasses produced by random pinning.
    Hocky GM; Berthier L; Reichman DR
    J Chem Phys; 2014 Dec; 141(22):224503. PubMed ID: 25494756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry.
    Ahrenberg M; Chua YZ; Whitaker KR; Huth H; Ediger MD; Schick C
    J Chem Phys; 2013 Jan; 138(2):024501. PubMed ID: 23320698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular packing in highly stable glasses of vapor-deposited tris-naphthylbenzene isomers.
    Dawson K; Kopff LA; Zhu L; McMahon RJ; Yu L; Richert R; Ediger MD
    J Chem Phys; 2012 Mar; 136(9):094505. PubMed ID: 22401450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastable monodisperse polymer glass formed by physical vapour deposition.
    Raegen AN; Yin J; Zhou Q; Forrest JA
    Nat Mater; 2020 Oct; 19(10):1110-1113. PubMed ID: 32632279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable glasses of indomethacin and α,α,β-tris-naphthylbenzene transform into ordinary supercooled liquids.
    Sepúlveda A; Swallen SF; Kopff LA; McMahon RJ; Ediger MD
    J Chem Phys; 2012 Nov; 137(20):204508. PubMed ID: 23206020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vapor-Deposited Ethylbenzene Glasses Approach "Ideal Glass" Density.
    Beasley MS; Bishop C; Kasting BJ; Ediger MD
    J Phys Chem Lett; 2019 Jul; 10(14):4069-4075. PubMed ID: 31269793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Front-Mediated Melting of Isotropic Ultrastable Glasses.
    Flenner E; Berthier L; Charbonneau P; Fullerton CJ
    Phys Rev Lett; 2019 Oct; 123(17):175501. PubMed ID: 31702270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model vapor-deposited glasses: growth front and composition effects.
    Lyubimov I; Ediger MD; de Pablo JJ
    J Chem Phys; 2013 Oct; 139(14):144505. PubMed ID: 24116633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of substrate temperature on the transformation front velocities that determine thermal stability of vapor-deposited glasses.
    Dalal SS; Ediger MD
    J Phys Chem B; 2015 Mar; 119(9):3875-82. PubMed ID: 25664997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nematic-like stable glasses without equilibrium liquid crystal phases.
    Gómez J; Gujral A; Huang C; Bishop C; Yu L; Ediger MD
    J Chem Phys; 2017 Feb; 146(5):054503. PubMed ID: 28178836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal Growth Kinetics in GeS
    Málek J; Podzemná V; Shánělová J
    J Phys Chem B; 2021 Jul; 125(27):7515-7526. PubMed ID: 34212733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The melting of stable glasses is governed by nucleation-and-growth dynamics.
    Jack RL; Berthier L
    J Chem Phys; 2016 Jun; 144(24):244506. PubMed ID: 27369526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of β Relaxation in Vapor-Deposited Ultrastable Glasses.
    Yu HB; Tylinski M; Guiseppi-Elie A; Ediger MD; Richert R
    Phys Rev Lett; 2015 Oct; 115(18):185501. PubMed ID: 26565473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perspective: Highly stable vapor-deposited glasses.
    Ediger MD
    J Chem Phys; 2017 Dec; 147(21):210901. PubMed ID: 29221396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus.
    Kearns KL; Krzyskowski P; Devereaux Z
    J Chem Phys; 2017 May; 146(20):203328. PubMed ID: 28571345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.