These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32142346)

  • 1. Spontaneous Velocity Alignment in Motility-Induced Phase Separation.
    Caprini L; Marini Bettolo Marconi U; Puglisi A
    Phys Rev Lett; 2020 Feb; 124(7):078001. PubMed ID: 32142346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase separation of self-propelled disks with ferromagnetic and nematic alignment.
    Sesé-Sansa E; Levis D; Pagonabarraga I
    Phys Rev E; 2021 Nov; 104(5-1):054611. PubMed ID: 34942723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interparticle torques suppress motility-induced phase separation for rodlike particles.
    van Damme R; Rodenburg J; van Roij R; Dijkstra M
    J Chem Phys; 2019 Apr; 150(16):164501. PubMed ID: 31042908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Brownian equation of state: metastability and phase coexistence.
    Levis D; Codina J; Pagonabarraga I
    Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additivity and density fluctuations in Vicsek-like models of self-propelled particles.
    Chakraborti S; Pradhan P
    Phys Rev E; 2019 May; 99(5-1):052604. PubMed ID: 31212568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal dynamics of a self-propelled system with opposing alignment and repulsive forces.
    Mohapatra S; Mondal S; Mahapatra PS
    Phys Rev E; 2020 Oct; 102(4-1):042613. PubMed ID: 33212711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective behavior of soft self-propelled disks with rotational inertia.
    De Karmakar S; Chugh A; Ganesh R
    Sci Rep; 2022 Dec; 12(1):22563. PubMed ID: 36581743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles.
    Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C
    Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems.
    Menzel AM
    J Phys Condens Matter; 2013 Dec; 25(50):505103. PubMed ID: 24275201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic field theory for structure formation in systems of self-propelled particles with generic torques.
    Sesé-Sansa E; Levis D; Pagonabarraga I
    J Chem Phys; 2022 Dec; 157(22):224905. PubMed ID: 36546814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Athermal phase separation of self-propelled particles with no alignment.
    Fily Y; Marchetti MC
    Phys Rev Lett; 2012 Jun; 108(23):235702. PubMed ID: 23003972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.
    Levis D; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory.
    Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ
    J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase separation in binary mixtures of active and passive particles.
    Dolai P; Simha A; Mishra S
    Soft Matter; 2018 Jul; 14(29):6137-6145. PubMed ID: 29999083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective effects in confined active Brownian particles.
    Caprini L; Maggi C; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jun; 154(24):244901. PubMed ID: 34241356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-switchable propulsion of active particles with reversible interactions.
    Vutukuri HR; Lisicki M; Lauga E; Vermant J
    Nat Commun; 2020 May; 11(1):2628. PubMed ID: 32457438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.