These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32142416)

  • 1. Novel Deep Learning Network Analysis of Electrical Stimulation Mapping-Driven Diffusion MRI Tractography to Improve Preoperative Evaluation of Pediatric Epilepsy.
    Lee MH; O'Hara N; Sonoda M; Kuroda N; Juhasz C; Asano E; Dong M; Jeong JW
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3151-3162. PubMed ID: 32142416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy.
    Jeong JW; Asano E; Juhász C; Chugani HT
    Epilepsia; 2015 Jan; 56(1):49-57. PubMed ID: 25489639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of primary motor pathways using diffusion MRI tractography and its application to predict postoperative motor deficits in children with focal epilepsy.
    Jeong JW; Asano E; Juhász C; Chugani HT
    Hum Brain Mapp; 2014 Jul; 35(7):3216-26. PubMed ID: 24142581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel diffusion tractography methodology using Kalman filter prediction to improve preoperative benefit-risk analysis in pediatric epilepsy surgery.
    Lee MH; O'Hara NB; Motoi H; Luat AF; Juhász C; Sood S; Asano E; Jeong JW
    J Neurosurg Pediatr; 2019 Sep; 24(3):293-305. PubMed ID: 31277057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Tract Classification of Preoperative DWI Tractography Advances the Prediction of Short-term Postoperative Language Improvement in Children with Drug-resistant Epilepsy.
    Lee MH; Banerje S; Uda H; Carlson A; Dong M; Rothermel R; Juhasz C; Asano E; Jeong JW
    IEEE Trans Biomed Eng; 2024 Sep; PP():. PubMed ID: 39292577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography.
    Yang JY; Beare R; Seal ML; Harvey AS; Anderson VA; Maixner WJ
    J Neurosurg Pediatr; 2017 May; 19(5):592-605. PubMed ID: 28304232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of postoperative deficits using an improved diffusion-weighted imaging maximum a posteriori probability analysis in pediatric epilepsy surgery.
    Lee MH; O'Hara NB; Nakai Y; Luat AF; Juhasz C; Sood S; Asano E; Jeong JW
    J Neurosurg Pediatr; 2019 May; 23(5):648-659. PubMed ID: 30797207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas.
    Caverzasi E; Hervey-Jumper SL; Jordan KM; Lobach IV; Li J; Panara V; Racine CA; Sankaranarayanan V; Amirbekian B; Papinutto N; Berger MS; Henry RG
    J Neurosurg; 2016 Jul; 125(1):33-45. PubMed ID: 26654181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of baseline expressive and receptive language function in children with focal epilepsy using diffusion tractography-based deep learning network.
    Jeong JW; Lee MH; O'Hara N; Juhász C; Asano E
    Epilepsy Behav; 2021 Apr; 117():107909. PubMed ID: 33740493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection of primary motor areas using diffusion MRI tractography: comparison with functional MRI and electrical stimulation mapping.
    Jeong JW; Asano E; Brown EC; Tiwari VN; Chugani DC; Chugani HT
    Epilepsia; 2013 Aug; 54(8):1381-90. PubMed ID: 23772829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.
    Jiménez de la Peña M; Gil Robles S; Recio Rodríguez M; Ruiz Ocaña C; Martínez de Vega V
    Radiologia; 2013; 55(6):505-13. PubMed ID: 22521686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective Detection of Eloquent Axonal Pathways to Minimize Postoperative Deficits in Pediatric Epilepsy Surgery using Diffusion Tractography and Convolutional Neural Networks.
    Xu H; Dong M; Lee MH; OrHara N; Asano E; Jeong JW
    IEEE Trans Med Imaging; 2019 Feb; ():. PubMed ID: 30835220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods.
    Bucci M; Mandelli ML; Berman JI; Amirbekian B; Nguyen C; Berger MS; Henry RG
    Neuroimage Clin; 2013; 3():361-8. PubMed ID: 24273719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning.
    Tian Q; Bilgic B; Fan Q; Liao C; Ngamsombat C; Hu Y; Witzel T; Setsompop K; Polimeni JR; Huang SY
    Neuroimage; 2020 Oct; 219():117017. PubMed ID: 32504817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Motor Pathways in Parkinson's Disease Patients with Subthalamic Deep Brain Stimulator: A Diffusion MRI Tractography Study.
    Li Y; He N; Zhang C; Liu Y; Li J; Sun B; Lai Y; Li H; Wang C; Haacke EM; Yan F; Li D
    Neurol Ther; 2022 Jun; 11(2):659-677. PubMed ID: 35165822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Setup presentation and clinical outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and tractography.
    Sollmann N; Kelm A; Ille S; Schröder A; Zimmer C; Ringel F; Meyer B; Krieg SM
    Neurosurg Focus; 2018 Jun; 44(6):E2. PubMed ID: 29852769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraoperative neurostimulation mapping: results from an international survey of epilepsy surgery programs.
    Hamberger MJ; Williams AC; Schevon CA
    Epilepsia; 2014 Jun; 55(6):933-9. PubMed ID: 24816083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the Extent of Resection in Low-Grade Glioma by Using Intratumoral Tractography to Detect Eloquent Fascicles Within the Tumor.
    Mato D; Velasquez C; Gómez E; Marco de Lucas E; Martino J
    Neurosurgery; 2021 Jan; 88(2):E190-E202. PubMed ID: 33313812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Reconstruction of Motor and Language Pathways Based on Navigated Transcranial Magnetic Stimulation and DTI Fiber Tracking for the Preoperative Planning of Low Grade Glioma Surgery: A New Tool for Preservation and Restoration of Eloquent Networks.
    Raffa G; Conti A; Scibilia A; Sindorio C; Quattropani MC; Visocchi M; Germanò A; Tomasello F
    Acta Neurochir Suppl; 2017; 124():251-261. PubMed ID: 28120081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca's area in the dominant hemisphere of patients with glioma.
    Fujii M; Maesawa S; Motomura K; Futamura M; Hayashi Y; Koba I; Wakabayashi T
    J Neurosurg; 2015 Jun; 122(6):1390-6. PubMed ID: 25816090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.