BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32142470)

  • 1. Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health.
    Jones LM; Chen Y; van Oosten-Hawle P
    Biol Chem; 2020 Aug; 401(9):1005-1018. PubMed ID: 32142470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans.
    Grushko D; Boocholez H; Levine A; Cohen E
    PLoS One; 2021; 16(7):e0243522. PubMed ID: 34197476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organismal Roles of Hsp90.
    van Oosten-Hawle P
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults.
    Boocholez H; Marques FC; Levine A; Roitenberg N; Siddiqui AA; Zhu H; Moll L; Grushko D; Haimson RB; Elami T; Cohen E
    Cell Rep; 2022 Feb; 38(6):110350. PubMed ID: 35139369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Mitochondrial Stress-Specific Form of HSF1 Protects against Age-Related Proteostasis Collapse.
    Williams R; Laskovs M; Williams RI; Mahadevan A; Labbadia J
    Dev Cell; 2020 Sep; 54(6):758-772.e5. PubMed ID: 32735771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.
    van Oosten-Hawle P; Morimoto RI
    J Exp Biol; 2014 Jan; 217(Pt 1):129-36. PubMed ID: 24353212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aging proteostasis decline: From nematode to human.
    Meller A; Shalgi R
    Exp Cell Res; 2021 Feb; 399(2):112474. PubMed ID: 33434530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.
    van Oosten-Hawle P; Morimoto RI
    Genes Dev; 2014 Jul; 28(14):1533-43. PubMed ID: 25030693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Intestine as a Lifespan- and Proteostasis-Promoting Signaling Tissue.
    Hodge F; Bajuszova V; van Oosten-Hawle P
    Front Aging; 2022; 3():897741. PubMed ID: 35821863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the Organismal Proteostasis Network: Linking Systemic Stress Signaling with the Innate Immune Response.
    Miles J; Scherz-Shouval R; van Oosten-Hawle P
    Trends Biochem Sci; 2019 Nov; 44(11):927-942. PubMed ID: 31303384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis.
    O'Brien D; Jones LM; Good S; Miles J; Vijayabaskar MS; Aston R; Smith CE; Westhead DR; van Oosten-Hawle P
    Cell Rep; 2018 Jun; 23(13):3905-3919. PubMed ID: 29949773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of cell-non-autonomous proteostasis in metazoans.
    O'Brien D; van Oosten-Hawle P
    Essays Biochem; 2016 Oct; 60(2):133-142. PubMed ID: 27744329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1.
    Ryno LM; Genereux JC; Naito T; Morimoto RI; Powers ET; Shoulders MD; Wiseman RL
    ACS Chem Biol; 2014 Jun; 9(6):1273-83. PubMed ID: 24689980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryo integrity regulates maternal proteostasis and stress resilience.
    Sala AJ; Bott LC; Brielmann RM; Morimoto RI
    Genes Dev; 2020 May; 34(9-10):678-687. PubMed ID: 32217667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting inter-tissue stress signaling mechanisms to preserve organismal proteostasis during aging.
    van Oosten-Hawle P
    Front Physiol; 2023; 14():1228490. PubMed ID: 37469564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Intracellular Pathogen Response Pathway Promotes Proteostasis in C. elegans.
    Reddy KC; Dror T; Sowa JN; Panek J; Chen K; Lim ES; Wang D; Troemel ER
    Curr Biol; 2017 Nov; 27(22):3544-3553.e5. PubMed ID: 29103937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupting the SKN-1 homeostat: mechanistic insights and phenotypic outcomes.
    Turner CD; Ramos CM; Curran SP
    Front Aging; 2024; 5():1369740. PubMed ID: 38501033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.
    Kumsta C; Hansen M
    Autophagy; 2017 Jun; 13(6):1076-1077. PubMed ID: 28333578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.