These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32142737)

  • 1. Estimating energy expenditure from accelerometer data in healthy adults and patients with type 2 diabetes.
    Caron N; Peyrot N; Caderby T; Verkindt C; Dalleau G
    Exp Gerontol; 2020 Mar; 134():110894. PubMed ID: 32142737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometry-based method for assessing energy expenditure in patients with diabetes during walking.
    Caron N; Peyrot N; Caderby T; Verkindt C; Dalleau G
    J Hum Nutr Diet; 2019 Aug; 32(4):531-534. PubMed ID: 30916423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerometry calibration in people with class II-III obesity: Energy expenditure prediction and physical activity intensity identification.
    Diniz-Sousa F; Veras L; Ribeiro JC; Boppre G; Devezas V; Santos-Sousa H; Preto J; Machado L; Vilas-Boas JP; Oliveira J; Fonseca H
    Gait Posture; 2020 Feb; 76():104-109. PubMed ID: 31756665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy cost of walking in older adults: accuracy of the ActiGraph accelerometer predictive equations.
    Ndahimana D; Kim YJ; Wang CS; Kim EK
    Nutr Res Pract; 2022 Oct; 16(5):565-576. PubMed ID: 36238379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of a multisensor armband in estimating 24-h energy expenditure in children.
    Dorminy CA; Choi L; Akohoue SA; Chen KY; Buchowski MS
    Med Sci Sports Exerc; 2008 Apr; 40(4):699-706. PubMed ID: 18317374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating energy expenditure from raw accelerometry in three types of locomotion.
    Brandes M; VAN Hees VT; Hannöver V; Brage S
    Med Sci Sports Exerc; 2012 Nov; 44(11):2235-42. PubMed ID: 22776868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
    Lyden K; Kozey SL; Staudenmeyer JW; Freedson PS
    Eur J Appl Physiol; 2011 Feb; 111(2):187-201. PubMed ID: 20842375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a method for estimating energy expenditure during walking in middle-aged adults.
    Caron N; Caderby T; Peyrot N; Verkindt C; Dalleau G
    Eur J Appl Physiol; 2018 Feb; 118(2):381-388. PubMed ID: 29224176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating energy expenditure using accelerometers.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Appl Physiol; 2006 Dec; 98(6):601-12. PubMed ID: 17058102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of three accelerometry-based devices for estimating energy expenditure in adults and children with cerebral palsy.
    Ryan JM; Walsh M; Gormley J
    J Neuroeng Rehabil; 2014 Aug; 11():116. PubMed ID: 25097005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction and Cross-validation of an Energy Expenditure Equation in Walking or Running in Asian Adults.
    Jin XI; Carithers T; Loftin M
    Int J Exerc Sci; 2021; 14(7):932-940. PubMed ID: 34567385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network versus activity-specific prediction equations for energy expenditure estimation in children.
    Ruch N; Joss F; Jimmy G; Melzer K; Hänggi J; Mäder U
    J Appl Physiol (1985); 2013 Nov; 115(9):1229-36. PubMed ID: 23990244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of low-intensity physical activity by triaxial accelerometry.
    Midorikawa T; Tanaka S; Kaneko K; Koizumi K; Ishikawa-Takata K; Futami J; Tabata I
    Obesity (Silver Spring); 2007 Dec; 15(12):3031-8. PubMed ID: 18198312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing ActiGraph equations for estimating energy expenditure in older adults.
    Aguilar-Farias N; Peeters GMEEG; Brychta RJ; Chen KY; Brown WJ
    J Sports Sci; 2019 Jan; 37(2):188-195. PubMed ID: 29912666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A; Santín-Medeiros F; Cardon G; Torres-Luque G; Bailón R; Bergmeir C; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating energy expenditure using heat flux measured at a single body site.
    Lyden K; Swibas T; Catenacci V; Guo R; Szuminsky N; Melanson EL
    Med Sci Sports Exerc; 2014 Nov; 46(11):2159-67. PubMed ID: 24811326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Metabolic Energy Expenditure During Level Running in Healthy, Military-Age Women and Men.
    Looney DP; Hoogkamer W; Kram R; Arellano CJ; Spiering BA
    J Strength Cond Res; 2023 Dec; 37(12):2496-2503. PubMed ID: 38015737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric validation of the Caltrac accelerometer during level walking.
    Balogun JA; Martin DA; Clendenin MA
    Phys Ther; 1989 Jun; 69(6):501-9. PubMed ID: 2727075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction equation of resting energy expenditure in an adult Spanish population of obese adult population.
    de Luis DA; Aller R; Izaola O; Romero E
    Ann Nutr Metab; 2006; 50(3):193-6. PubMed ID: 16407645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.