BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32142759)

  • 1. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
    Yeo M; Kim G
    Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation.
    Yeo M; Kim G
    Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropically Aligned Cell-Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue.
    Yeo M; Kim GH
    Small; 2018 Nov; 14(48):e1803491. PubMed ID: 30311453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting.
    Yang GH; Kim W; Kim J; Kim G
    Theranostics; 2021; 11(1):48-63. PubMed ID: 33391460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An
    Yeo M; Chae S; Kim G
    Theranostics; 2021; 11(7):3331-3347. PubMed ID: 33537090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Myoblast-Laden Collagen Filaments Fabricated Using a Submerged Bioprinting Process to Obtain Efficient Myogenic Activities.
    Kim D; Hwangbo H; Kim G
    Biomacromolecules; 2021 Dec; 22(12):5042-5051. PubMed ID: 34783537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells.
    Yao T; Chen H; Baker MB; Moroni L
    Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration.
    Kim W; Jang CH; Kim GH
    Nano Lett; 2019 Dec; 19(12):8612-8620. PubMed ID: 31661283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Myogenic Activities Achieved through Blade-Casting-Assisted Bioprinting of Aligned Myoblasts Laden in Collagen Bioink.
    Lee S; Kim W; Kim G
    Biomacromolecules; 2023 Nov; 24(11):5219-5229. PubMed ID: 37917832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lotus-Root-Like Microchanneled Collagen Scaffold.
    Hwangbo H; Kim W; Kim GH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12656-12667. PubMed ID: 33263976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration.
    Yeo M; Kim G
    ACS Biomater Sci Eng; 2018 Feb; 4(2):728-738. PubMed ID: 33418760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting.
    Chiesa I; De Maria C; Lapomarda A; Fortunato GM; Montemurro F; Di Gesù R; Tuan RS; Vozzi G; Gottardi R
    Biofabrication; 2020 Feb; 12(2):025013. PubMed ID: 31929117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fabrication of uniaxially aligned micro-textured polycaprolactone struts and application for skeletal muscle tissue regeneration.
    Yang GH; Lee J; Kim G
    Biofabrication; 2019 Feb; 11(2):025005. PubMed ID: 30669124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.