BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32142804)

  • 1. Towards abstraction of computational modelling of mammalian cell cycle: Model reduction pipeline incorporating multi-level hybrid petri nets.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2020 Jul; 496():110212. PubMed ID: 32142804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2017 Sep; 429():204-228. PubMed ID: 28647496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new hierarchical approach to multi-level model abstraction for simplifying ODE models of biological networks and a case study: The G1/S Checkpoint/DNA damage signalling pathways of mammalian cell cycle.
    Khazaaleh M; Samarasinghe S; Kulasiri D
    Biosystems; 2021 May; 203():104374. PubMed ID: 33556446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins as fuzzy controllers: Auto tuning a biological fuzzy inference system to predict protein dynamics in complex biological networks.
    Alsharaiah MA; Samarasinghe S; Kulasiri D
    Biosystems; 2023 Feb; 224():104826. PubMed ID: 36610587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using activity time windows and logical representation to reduce the complexity of biological network models: G1/S checkpoint pathway with DNA damage.
    Khazaaleh M; Samarasinghe S
    Biosystems; 2020 May; 191-192():104128. PubMed ID: 32165312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.
    Samarasinghe S; Ling H
    Biosystems; 2017; 153-154():6-25. PubMed ID: 28174135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coloured Hybrid Petri Nets: An adaptable modelling approach for multi-scale biological networks.
    Herajy M; Liu F; Rohr C; Heiner M
    Comput Biol Chem; 2018 Oct; 76():87-100. PubMed ID: 29982167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting a skeleton model for the mammalian cell cycle: From bistability to Cdk oscillations and cellular heterogeneity.
    Gérard C; Gonze D; Goldbeter A
    J Theor Biol; 2019 Jan; 461():276-290. PubMed ID: 30352237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing biological pathway models with hybrid functional petri nets.
    Doi A; Fujita S; Matsuno H; Nagasaki M; Miyano S
    Stud Health Technol Inform; 2011; 162():92-112. PubMed ID: 21685566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VANESA: An open-source hybrid functional Petri net modeling and simulation environment in systems biology.
    Brinkrolf C; Ochel L; Hofestädt R
    Biosystems; 2021 Dec; 210():104531. PubMed ID: 34492317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid modeling in biochemical systems theory by means of functional petri nets.
    Wu J; Voit E
    J Bioinform Comput Biol; 2009 Feb; 7(1):107-34. PubMed ID: 19226663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Petri net based analysis techniques to signal transduction pathways.
    Sackmann A; Heiner M; Koch I
    BMC Bioinformatics; 2006 Nov; 7():482. PubMed ID: 17081284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets.
    Zhang JH; Xia JJ; Garibaldi JM; Groumpos PP; Wang RB
    Comput Methods Programs Biomed; 2017 Jun; 144():147-163. PubMed ID: 28494999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coloured fuzzy Petri nets for modelling and analysing membrane systems.
    Assaf G; Heiner M; Liu F
    Biosystems; 2022 Feb; 212():104592. PubMed ID: 34995696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of signal transduction networks without kinetic parameters: Petri net approaches.
    Koch I; Büttner B
    Am J Physiol Cell Physiol; 2023 May; 324(5):C1126-C1140. PubMed ID: 36878844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An advanced environment for hybrid modeling of biological systems based on modelica.
    Pross S; Bachmann B
    J Integr Bioinform; 2011 Jan; 8(1):. PubMed ID: 21248370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Petri Net Approach to Physiologically Based Toxicokinetic Modeling.
    Edhlund I; Lee C
    Environ Toxicol Chem; 2019 May; 38(5):978-987. PubMed ID: 30756430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.
    Almeida D; Azevedo V; Silva A; Baumbach J
    J Integr Bioinform; 2016 Jun; 13(1):284. PubMed ID: 27402693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial quorum sensing modelling using coloured hybrid Petri nets and simulative model checking.
    Gilbert D; Heiner M; Ghanbar L; Chodak J
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):173. PubMed ID: 30999841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.