These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32142804)

  • 1. Towards abstraction of computational modelling of mammalian cell cycle: Model reduction pipeline incorporating multi-level hybrid petri nets.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2020 Jul; 496():110212. PubMed ID: 32142804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2017 Sep; 429():204-228. PubMed ID: 28647496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new hierarchical approach to multi-level model abstraction for simplifying ODE models of biological networks and a case study: The G1/S Checkpoint/DNA damage signalling pathways of mammalian cell cycle.
    Khazaaleh M; Samarasinghe S; Kulasiri D
    Biosystems; 2021 May; 203():104374. PubMed ID: 33556446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins as fuzzy controllers: Auto tuning a biological fuzzy inference system to predict protein dynamics in complex biological networks.
    Alsharaiah MA; Samarasinghe S; Kulasiri D
    Biosystems; 2023 Feb; 224():104826. PubMed ID: 36610587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using activity time windows and logical representation to reduce the complexity of biological network models: G1/S checkpoint pathway with DNA damage.
    Khazaaleh M; Samarasinghe S
    Biosystems; 2020 May; 191-192():104128. PubMed ID: 32165312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks.
    Samarasinghe S; Ling H
    Biosystems; 2017; 153-154():6-25. PubMed ID: 28174135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coloured Hybrid Petri Nets: An adaptable modelling approach for multi-scale biological networks.
    Herajy M; Liu F; Rohr C; Heiner M
    Comput Biol Chem; 2018 Oct; 76():87-100. PubMed ID: 29982167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting a skeleton model for the mammalian cell cycle: From bistability to Cdk oscillations and cellular heterogeneity.
    Gérard C; Gonze D; Goldbeter A
    J Theor Biol; 2019 Jan; 461():276-290. PubMed ID: 30352237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing biological pathway models with hybrid functional petri nets.
    Doi A; Fujita S; Matsuno H; Nagasaki M; Miyano S
    Stud Health Technol Inform; 2011; 162():92-112. PubMed ID: 21685566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VANESA: An open-source hybrid functional Petri net modeling and simulation environment in systems biology.
    Brinkrolf C; Ochel L; Hofestädt R
    Biosystems; 2021 Dec; 210():104531. PubMed ID: 34492317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid modeling in biochemical systems theory by means of functional petri nets.
    Wu J; Voit E
    J Bioinform Comput Biol; 2009 Feb; 7(1):107-34. PubMed ID: 19226663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Petri net based analysis techniques to signal transduction pathways.
    Sackmann A; Heiner M; Koch I
    BMC Bioinformatics; 2006 Nov; 7():482. PubMed ID: 17081284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets.
    Zhang JH; Xia JJ; Garibaldi JM; Groumpos PP; Wang RB
    Comput Methods Programs Biomed; 2017 Jun; 144():147-163. PubMed ID: 28494999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coloured fuzzy Petri nets for modelling and analysing membrane systems.
    Assaf G; Heiner M; Liu F
    Biosystems; 2022 Feb; 212():104592. PubMed ID: 34995696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of signal transduction networks without kinetic parameters: Petri net approaches.
    Koch I; Büttner B
    Am J Physiol Cell Physiol; 2023 May; 324(5):C1126-C1140. PubMed ID: 36878844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An advanced environment for hybrid modeling of biological systems based on modelica.
    Pross S; Bachmann B
    J Integr Bioinform; 2011 Jan; 8(1):. PubMed ID: 21248370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Petri Net Approach to Physiologically Based Toxicokinetic Modeling.
    Edhlund I; Lee C
    Environ Toxicol Chem; 2019 May; 38(5):978-987. PubMed ID: 30756430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.
    Almeida D; Azevedo V; Silva A; Baumbach J
    J Integr Bioinform; 2016 Jun; 13(1):284. PubMed ID: 27402693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling and simulating reaction-diffusion systems using coloured Petri nets.
    Liu F; Blätke MA; Heiner M; Yang M
    Comput Biol Med; 2014 Oct; 53():297-308. PubMed ID: 25150626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.