These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32142878)

  • 1. Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis-like lung inflammation.
    Dickerhof N; Huang J; Min E; Michaëlsson E; Lindstedt EL; Pearson JF; Kettle AJ; Day BJ
    Free Radic Biol Med; 2020 May; 152():91-99. PubMed ID: 32142878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency.
    Dickerhof N; Pearson JF; Hoskin TS; Berry LJ; Turner R; Sly PD; Kettle AJ;
    Free Radic Biol Med; 2017 Dec; 113():236-243. PubMed ID: 28982600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutrophil extracellular traps are present in the airways of ENaC-overexpressing mice with cystic fibrosis-like lung disease.
    Tucker SL; Sarr D; Rada B
    BMC Immunol; 2021 Jan; 22(1):7. PubMed ID: 33478382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation contributes to low glutathione in the airways of children with cystic fibrosis.
    Kettle AJ; Turner R; Gangell CL; Harwood DT; Khalilova IS; Chapman AL; Winterbourn CC; Sly PD;
    Eur Respir J; 2014 Jul; 44(1):122-9. PubMed ID: 24659542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis.
    Kettle AJ; Chan T; Osberg I; Senthilmohan R; Chapman AL; Mocatta TJ; Wagener JS
    Am J Respir Crit Care Med; 2004 Dec; 170(12):1317-23. PubMed ID: 15466253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-dependent metabolomic signatures of myeloperoxidase activity in airway epithelial cells: Implications for early cystic fibrosis lung disease.
    Kim SO; Shapiro JP; Cottrill KA; Collins GL; Shanthikumar S; Rao P; Ranganathan S; Stick SM; Orr ML; Fitzpatrick AM; Go YM; Jones DP; Tirouvanziam RM; Chandler JD
    Free Radic Biol Med; 2023 Sep; 206():180-190. PubMed ID: 37356776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of thiol-based antioxidant therapeutics in cystic fibrosis sputum: Focus on myeloperoxidase.
    Vasu VT; de Cruz SJ; Houghton JS; Hayakawa KA; Morrissey BM; Cross CE; Eiserich JP
    Free Radic Res; 2011 Feb; 45(2):165-76. PubMed ID: 20954832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Deletion and Pharmacological Inhibition of PI3K γ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease.
    Galluzzo M; Ciraolo E; Lucattelli M; Hoxha E; Ulrich M; Campa CC; Lungarella G; Doring G; Zhou-Suckow Z; Mall M; Hirsch E; De Rose V
    Mediators Inflamm; 2015; 2015():545417. PubMed ID: 26185363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs.
    Hartl D; Starosta V; Maier K; Beck-Speier I; Rebhan C; Becker BF; Latzin P; Fischer R; Ratjen F; Huber RM; Rietschel E; Krauss-Etschmann S; Griese M
    Free Radic Biol Med; 2005 Aug; 39(4):463-72. PubMed ID: 16043018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis.
    Thomson E; Brennan S; Senthilmohan R; Gangell CL; Chapman AL; Sly PD; Kettle AJ; ; Balding E; Berry LJ; Carlin JB; Carzino R; de Klerk N; Douglas T; Foo C; Garratt LW; Hall GL; Harrison J; Kicic A; Laing IA; Logie KM; Massie J; Mott LS; Murray C; Parsons F; Pillarisetti N; Poreddy SR; Ranganathan SC; Robertson CF; Robins-Browne R; Robinson PJ; Skoric B; Stick SM; Sutanto EN; Williamson E
    Free Radic Biol Med; 2010 Nov; 49(9):1354-60. PubMed ID: 20647044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiinflammatory and Antimicrobial Effects of Thiocyanate in a Cystic Fibrosis Mouse Model.
    Chandler JD; Min E; Huang J; McElroy CS; Dickerhof N; Mocatta T; Fletcher AA; Evans CM; Liang L; Patel M; Kettle AJ; Nichols DP; Day BJ
    Am J Respir Cell Mol Biol; 2015 Aug; 53(2):193-205. PubMed ID: 25490247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice.
    Gavina M; Luciani A; Villella VR; Esposito S; Ferrari E; Bressani I; Casale A; Bruscia EM; Maiuri L; Raia V
    Pediatr Pulmonol; 2013 Aug; 48(8):761-71. PubMed ID: 22825912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary oxidative stress response in young children with cystic fibrosis.
    Hull J; Vervaart P; Grimwood K; Phelan P
    Thorax; 1997 Jun; 52(6):557-60. PubMed ID: 9227724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease.
    Chandler JD; Margaroli C; Horati H; Kilgore MB; Veltman M; Liu HK; Taurone AJ; Peng L; Guglani L; Uppal K; Go YM; Tiddens HAWM; Scholte BJ; Tirouvanziam R; Jones DP; Janssens HM
    Eur Respir J; 2018 Oct; 52(4):. PubMed ID: 30190273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of bile acids in bronchoalveolar lavage fluid defines the inflammatory and microbial landscape of the lower airways in infants with cystic fibrosis.
    Caparrós-Martín JA; Saladie M; Agudelo-Romero SP; Reen FJ; Ware RS; Sly PD; Stick SM; O'Gara F;
    Microbiome; 2023 Jun; 11(1):132. PubMed ID: 37312128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease.
    Scholte BJ; Horati H; Veltman M; Vreeken RJ; Garratt LW; Tiddens HAWM; Janssens HM; Stick SM;
    J Cyst Fibros; 2019 Nov; 18(6):781-789. PubMed ID: 31031161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses.
    Bodas M; Mazur S; Min T; Vij N
    Respir Res; 2018 Jan; 19(1):2. PubMed ID: 29301535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice.
    Haegens A; van der Vliet A; Butnor KJ; Heintz N; Taatjes D; Hemenway D; Vacek P; Freeman BA; Hazen SL; Brennan ML; Mossman BT
    Cancer Res; 2005 Nov; 65(21):9670-7. PubMed ID: 16266986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloperoxidase deficiency enhances inflammation after allogeneic marrow transplantation.
    Milla C; Yang S; Cornfield DN; Brennan ML; Hazen SL; Panoskaltsis-Mortari A; Blazar BR; Haddad IY
    Am J Physiol Lung Cell Mol Physiol; 2004 Oct; 287(4):L706-14. PubMed ID: 15020295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CXCR2 antagonists block the N-Ac-PGP-induced neutrophil influx in the airways of mice, but not the production of the chemokine CXCL1.
    Braber S; Overbeek SA; Koelink PJ; Henricks PA; Zaman GJ; Garssen J; Kraneveld AD; Folkerts G
    Eur J Pharmacol; 2011 Oct; 668(3):443-9. PubMed ID: 21458445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.