These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32142909)

  • 1. An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI.
    Gong M; Xu G; Li M; Lin F
    J Neurosci Methods; 2020 May; 337():108670. PubMed ID: 32142909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fisher linear discriminant analysis classifier fused with naïve Bayes for simultaneous detection in an asynchronous brain-computer interface.
    Li M; Zhang P; Yang G; Xu G; Guo M; Liao W
    J Neurosci Methods; 2022 Apr; 371():109496. PubMed ID: 35151667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-step idle-state detection method for SSVEP BCI.
    Du J; Ke Y; Liu P; Liu W; Kong L; Wang N; Xu M; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3095-3098. PubMed ID: 31946542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-periodic fluctuation in Donchin's speller signals and its potential use for asynchronous control.
    Ma Z; Qiu T
    Biomed Tech (Berl); 2018 Mar; 63(2):105-112. PubMed ID: 27655447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of the idle state based on a novel IFB-OCN method for an asynchronous brain-computer interface.
    Zhang W; Zhou T; Zhao J; Ji B; Wu Z
    J Neurosci Methods; 2020 Jul; 341():108776. PubMed ID: 32479971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asynchronous Control of ERP-Based BCI Spellers Using Steady-State Visual Evoked Potentials Elicited by Peripheral Stimuli.
    Santamaria-Vazquez E; Martinez-Cagigal V; Gomez-Pilar J; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1883-1892. PubMed ID: 31403437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach.
    Pan J; Li Y; Zhang R; Gu Z; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):435-43. PubMed ID: 23673460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.
    Tu Y; Huang G; Hung YS; Hu L; Hu Y; Zhang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2882-5. PubMed ID: 24110329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 12. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capsule Network for ERP Detection in Brain-Computer Interface.
    Ma R; Yu T; Zhong X; Yu ZL; Li Y; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():718-730. PubMed ID: 33793402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 17. Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach.
    Pinegger A; Faller J; Halder S; Wriessnegger SC; Müller-Putz GR
    J Neural Eng; 2015 Feb; 12(1):014001. PubMed ID: 25587889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asynchronous gaze-independent event-related potential-based brain-computer interface.
    Aloise F; Aricò P; Schettini F; Salinari S; Mattia D; Cincotti F
    Artif Intell Med; 2013 Oct; 59(2):61-9. PubMed ID: 24080078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asynchronous Brain-Computer Interfacing Based on Mixed-Coded Visual Stimuli.
    Suefusa K; Tanaka T
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2119-2129. PubMed ID: 29989946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.