BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32142985)

  • 1. Changes in water loss and cell wall metabolism during postharvest withering of tobacco (Nicotiana tabacum L.) leaves using tandem mass tag-based quantitative proteomics approach.
    Wu S; Cao G; Adil MF; Tu Y; Wang W; Cai B; Zhao D; Shamsi IH
    Plant Physiol Biochem; 2020 May; 150():121-132. PubMed ID: 32142985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco (
    Wu S; Guo Y; Adil MF; Sehar S; Cai B; Xiang Z; Tu Y; Zhao D; Shamsi IH
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iTRAQ-based comparative proteomic analysis reveals high temperature accelerated leaf senescence of tobacco (Nicotiana tabacum L.) during flue-curing.
    Wu S; Guo Y; Joan HI; Tu Y; Adil MF; Sehar S; Zhao D; Shamsi IH
    Genomics; 2020 Sep; 112(5):3075-3088. PubMed ID: 32454168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis).
    Wu ZJ; Ma HY; Zhuang J
    Mol Genet Genomics; 2018 Feb; 293(1):45-59. PubMed ID: 28852881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active rearrangements in the cell wall follow polymer concentration during postharvest withering in the berry skin of Vitis vinifera cv. Corvina.
    Fasoli M; Dell'Anna R; Amato A; Balestrini R; Dal Santo S; Monti F; Zenoni S
    Plant Physiol Biochem; 2019 Feb; 135():411-422. PubMed ID: 30473420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll Metabolism in Postharvest Tea (
    Yu X; Hu S; He C; Zhou J; Qu F; Ai Z; Chen Y; Ni D
    J Agric Food Chem; 2019 Sep; 67(38):10624-10636. PubMed ID: 31483633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress.
    Ma TL; Li WJ; Hong YS; Zhou YM; Tian L; Zhang XG; Liu FL; Liu P
    J Proteomics; 2022 Feb; 253():104457. PubMed ID: 34933133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morpho-physiological and proteomic responses to water stress in two contrasting tobacco varieties.
    Chen Z; Xu J; Wang F; Wang L; Xu Z
    Sci Rep; 2019 Dec; 9(1):18523. PubMed ID: 31811189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NtPHYB1
    Zhao J; Han J; Zhang J; Li Z; Yu J; Yu S; Guo Y; Fu Y; Zhang X
    Plant Physiol Biochem; 2016 Dec; 109():45-53. PubMed ID: 27636822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering.
    Di Carli M; Zamboni A; Pè ME; Pezzotti M; Lilley KS; Benvenuto E; Desiderio A
    J Proteome Res; 2011 Feb; 10(2):429-46. PubMed ID: 20945943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.
    Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG
    Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the proteomic expression profile of tobacco (Nicotiana tabacum) leaves during four growth stages using the iTRAQ method.
    Chen M; Yan G; Wang X; Huang Z; Shao X; Wu D; Zhang X; Liu B
    Anal Bioanal Chem; 2019 Jan; 411(2):403-411. PubMed ID: 30478513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection.
    Nguema-Ona E; Moore JP; Fagerström AD; Fangel JU; Willats WG; Hugo A; Vivier MA
    BMC Plant Biol; 2013 Mar; 13():46. PubMed ID: 23506352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen application and differences in leaf number retained after topping affect the tobacco (Nicotiana tabacum) transcriptome and metabolome.
    Lei B; Chang W; Zhao H; Zhang K; Yu J; Yu S; Cai K; Zhang J; Lu K
    BMC Plant Biol; 2022 Jan; 22(1):38. PubMed ID: 35045826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomic Analysis of Alligator Weed Leaves Reveals That Cationic Peroxidase 1 Plays Vital Roles in the Potassium Deficiency Stress Response.
    Li LQ; Lyu CC; Li JH; Wan CY; Liu L; Xie MQ; Zuo RJ; Ni S; Liu F; Zeng FC; Lu YF; Yu LP; Huang XL; Wang XY; Lu LM
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32268484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity.
    Yu X; Li Y; He C; Zhou J; Chen Y; Yu Z; Wang P; Ni D
    Food Chem; 2020 Oct; 327():126992. PubMed ID: 32447133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride.
    Liu Y; Cao D; Ma L; Jin X; Yang P; Ye F; Liu P; Gong Z; Wei C
    J Proteomics; 2018 Mar; 176():71-81. PubMed ID: 29408313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response.
    Kuluev B; Avalbaev A; Mikhaylova E; Nikonorov Y; Berezhneva Z; Chemeris A
    J Plant Physiol; 2016 Nov; 206():1-12. PubMed ID: 27664375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMT-Based Quantitative Proteomic Analysis Reveals the Physiological Regulatory Networks of Embryo Dehydration Protection in Lotus (
    Zhang D; Liu T; Sheng J; Lv S; Ren L
    Front Plant Sci; 2021; 12():792057. PubMed ID: 34975978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis.
    Zhang H; Xu Z; Guo K; Huo Y; He G; Sun H; Guan Y; Xu N; Yang W; Sun G
    Ecotoxicol Environ Saf; 2020 Oct; 202():110856. PubMed ID: 32629202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.