These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32143069)

  • 1. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors.
    Vaknine S; Soreq H
    Neuropharmacology; 2020 May; 168():108020. PubMed ID: 32143069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut feeling: MicroRNA discriminators of the intestinal TLR9-cholinergic links.
    Nadorp B; Soreq H
    Int Immunopharmacol; 2015 Nov; 29(1):8-14. PubMed ID: 26003847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway.
    Pavlov VA; Parrish WR; Rosas-Ballina M; Ochani M; Puerta M; Ochani K; Chavan S; Al-Abed Y; Tracey KJ
    Brain Behav Immun; 2009 Jan; 23(1):41-5. PubMed ID: 18639629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological Influencing of The Cholinergic Anti-inflammatory Pathway in Infectious Diseases and Inflammatory Pathologies.
    Pohanka M
    Mini Rev Med Chem; 2021; 21(6):660-669. PubMed ID: 33208075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized genetics of the cholinergic blockade of neuroinflammation.
    Simchovitz A; Heneka MT; Soreq H
    J Neurochem; 2017 Aug; 142 Suppl 2(Suppl Suppl 2):178-187. PubMed ID: 28326544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinesterases and the fine line between poison and remedy.
    Pope CN; Brimijoin S
    Biochem Pharmacol; 2018 Jul; 153():205-216. PubMed ID: 29409903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antisense miR-132 blockade via the AChE-R splice variant mitigates cortical inflammation.
    Mishra N; Friedson L; Hanin G; Bekenstein U; Volovich M; Bennett ER; Greenberg DS; Soreq H
    Sci Rep; 2017 Feb; 7():42755. PubMed ID: 28209997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase.
    Shaked I; Meerson A; Wolf Y; Avni R; Greenberg D; Gilboa-Geffen A; Soreq H
    Immunity; 2009 Dec; 31(6):965-73. PubMed ID: 20005135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulators of Acetylcholinesterase Activity: From Alzheimer's Disease to Anti-Cancer Drugs.
    Lazarevic-Pasti T; Leskovac A; Momic T; Petrovic S; Vasic V
    Curr Med Chem; 2017; 24(30):3283-3309. PubMed ID: 28685687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinesterase inhibitors proposed for treating dementia in Alzheimer's disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase.
    Pacheco G; Palacios-Esquivel R; Moss DE
    J Pharmacol Exp Ther; 1995 Aug; 274(2):767-70. PubMed ID: 7636741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic System and Neuroinflammation: Implication in Multiple Sclerosis.
    Di Bari M; Di Pinto G; Reale M; Mengod G; Tata AM
    Cent Nerv Syst Agents Med Chem; 2017; 17(2):109-115. PubMed ID: 27550615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide Neurotoxicity as a Possible Factor Responsible for Inflammation in the Cholinergic Nervous System.
    Kopańska M; Łagowska A; Kuduk B; Banaś-Ząbczyk A
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase.
    Farar V; Mohr F; Legrand M; Lamotte d'Incamps B; Cendelin J; Leroy J; Abitbol M; Bernard V; Baud F; Fournet V; Houze P; Klein J; Plaud B; Tuma J; Zimmermann M; Ascher P; Hrabovska A; Myslivecek J; Krejci E
    J Neurochem; 2012 Sep; 122(5):1065-80. PubMed ID: 22747514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced analgesic cholinergic tone in the spinal cord in a mouse model of neuropathic pain.
    Dhanasobhon D; Medrano MC; Becker LJ; Moreno-Lopez Y; Kavraal S; Bichara C; Schlichter R; Inquimbert P; Yalcin I; Cordero-Erausquin M
    Neurobiol Dis; 2021 Jul; 155():105363. PubMed ID: 33845128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donepezil, an acetylcholinesterase inhibitor, attenuates LPS-induced inflammatory response in murine macrophage cell line RAW 264.7 through inhibition of nuclear factor kappa B translocation.
    Arikawa M; Kakinuma Y; Noguchi T; Todaka H; Sato T
    Eur J Pharmacol; 2016 Oct; 789():17-26. PubMed ID: 27373848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic protection via alpha7 nicotinic acetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation.
    Tyagi E; Agrawal R; Nath C; Shukla R
    Neurochem Int; 2010 Jan; 56(1):135-42. PubMed ID: 19781587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting acetylcholinesterase and butyrylcholinesterase in dementia.
    Lane RM; Potkin SG; Enz A
    Int J Neuropsychopharmacol; 2006 Feb; 9(1):101-24. PubMed ID: 16083515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors.
    Nizri E; Hamra-Amitay Y; Sicsic C; Lavon I; Brenner T
    Neuropharmacology; 2006 Apr; 50(5):540-7. PubMed ID: 16336980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection.
    Singh M; Kaur M; Kukreja H; Chugh R; Silakari O; Singh D
    Eur J Med Chem; 2013; 70():165-88. PubMed ID: 24148993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-inflammatory and protective effects of MT-031, a novel multitarget MAO-A and AChE/BuChE inhibitor in scopolamine mouse model and inflammatory cells.
    Liu W; Rabinovich A; Nash Y; Frenkel D; Wang Y; Youdim MBH; Weinreb O
    Neuropharmacology; 2017 Feb; 113(Pt A):445-456. PubMed ID: 27984078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.