These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32143129)

  • 1. A new formaldehyde optical sensor: Detecting milk adulteration.
    Veríssimo MIS; Gamelas JAF; Fernandes AJS; Evtuguin DV; Gomes MTSR
    Food Chem; 2020 Jul; 318():126461. PubMed ID: 32143129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.
    Nascimento CF; Brasil MA; Costa SP; Pinto PC; Saraiva ML; Rocha FR
    Talanta; 2015 Nov; 144():1189-94. PubMed ID: 26452946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue.
    Ghohestani E; Tashkhourian J; Hemmateenejad B
    Food Chem; 2024 Oct; 456():139973. PubMed ID: 38852440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution and gaseous phase sensing of formaldehyde with economical triphenylmethane based sensors: a tool to estimate formaldehyde content in stored fish samples.
    Kakoti A; Borah J; Sonowal DJ; Devi S; Hazarika UN; Konwer S; Khakhlary P
    Analyst; 2024 May; 149(10):2988-2995. PubMed ID: 38602359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetic relaxation switch sensor for determination of 17β-estradiol in milk and eggs based on aptamer-functionalized Fe
    Wang X; Pei K; Sun H; Wang Q
    J Sci Food Agric; 2021 Oct; 101(13):5697-5706. PubMed ID: 33786831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.
    Hu Y; Lu X
    J Food Sci; 2016 May; 81(5):N1272-80. PubMed ID: 27061315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive paper-based vapor-test kit for instant formalin detection in food products.
    Seebunrueng K; Naksen P; Jarujamrus P; Sansuk S; Treekamol Y; Teshima N; Murakami H; Srijaranai S
    Food Chem; 2024 Sep; 451():139402. PubMed ID: 38678650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effects of the adulterants in milk using direct-infusion high-resolution mass spectrometry.
    Guerreiro TM; de Oliveira DN; Melo CFOR; de Oliveira Lima E; Ribeiro MDS; Catharino RR
    Food Res Int; 2018 Jun; 108():498-504. PubMed ID: 29735085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining performance parameters in qualitative multivariate methods using probability of detection (POD) curves. Case study: Two common milk adulterants.
    Gondim CS; Junqueira RG; de Souza SVC; Callao MP; Ruisánchez I
    Talanta; 2017 Jun; 168():23-30. PubMed ID: 28391847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of formaldehyde in fresh and retail milk by liquid column chromatography.
    Kaminski J; Atwal AS; Mahadevan S
    J AOAC Int; 1993; 76(5):1010-3. PubMed ID: 8241806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde content of milk in goats fed formaldehyde-treated soybean oil-meal.
    Barry JL; Tomé D
    Food Addit Contam; 1991; 8(5):633-40. PubMed ID: 1818837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low cost instrumentation system to analyze different types of milk adulteration.
    Das S; Sivaramakrishna M; Biswas K; Goswami B
    ISA Trans; 2015 May; 56():268-75. PubMed ID: 25532935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor.
    Yao Y; Wu H; Ping J
    Food Chem; 2019 Feb; 274():8-15. PubMed ID: 30373012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of melamine in milk powder and milk by high performance liquid chromatography].
    He Q; Liu M; Huang L; Yang Y; Liao S
    Se Pu; 2008 Nov; 26(6):752-4. PubMed ID: 19253558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bent Fiber Sensor for Preservative Detection in Milk.
    Saracoglu OG; Hayber SE
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of estrogenic compounds in milk and yogurt samples by hollow-fibre liquid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry.
    D'Orazio G; Hernández-Borges J; Herrera-Herrera AV; Fanali S; Rodríguez-Delgado MÁ
    Anal Bioanal Chem; 2016 Oct; 408(26):7447-59. PubMed ID: 27526090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of formaldehyde in food and feed by an in-house validated HPLC method.
    Wahed P; Razzaq MA; Dharmapuri S; Corrales M
    Food Chem; 2016 Jul; 202():476-83. PubMed ID: 26920321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of Raman Spectroscopy and Pattern Recognition Methods for Determining the Authenticity and Detecting the Adulteration of Milk Powder].
    Wang HY; Song C; Liu J; Zhang ZY; Xie WL; Li LP; Sha M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):124-8. PubMed ID: 30195279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive approach for milk adulteration detection using inherent bio-physical properties as 'Universal Markers': Towards a miniaturized adulteration detection platform.
    Tripathy S; Ghole AR; Deep K; Vanjari SRK; Singh SG
    Food Chem; 2017 Feb; 217():756-765. PubMed ID: 27664695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies.
    Gondim CS; Junqueira RG; Souza SVC; Ruisánchez I; Callao MP
    Food Chem; 2017 Sep; 230():68-75. PubMed ID: 28407966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.