BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32143145)

  • 21. Biomass-based controllable morphology of carbon microspheres with multi-layer hollow structure for superior performance in supercapacitors.
    Gao J; Wang ZQ; Wang ZF; Li B; Liu ZY; Huang JJ; Fang YT; Chen CM
    J Colloid Interface Sci; 2024 Mar; 658():90-99. PubMed ID: 38100979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of dually N/S-doped carbon from biomass lignin: Porous architecture and high-rate performance as supercapacitor.
    Yin WM; Tian LF; Pang B; Guo YR; Li SJ; Pan QJ
    Int J Biol Macromol; 2020 Aug; 156():988-996. PubMed ID: 32315681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells.
    Mohammed AA; Chen C; Zhu Z
    J Colloid Interface Sci; 2019 Mar; 538():308-319. PubMed ID: 30530028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors.
    Wu Q; Hu J; Cao S; Yu S; Huang L
    Int J Biol Macromol; 2020 Jul; 155():131-141. PubMed ID: 32224186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass Straw-Derived Porous Carbon Synthesized for Supercapacitor by Ball Milling.
    Jiang B; Cao L; Yuan Q; Ma Z; Huang Z; Lin Z; Zhang P
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance.
    Xu H; Wang L; Zhang Y; Chen Y; Gao S
    Nanoscale; 2021 Jun; 13(22):10051-10060. PubMed ID: 34042145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Green Approach to High-Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate.
    Sevilla M; Fuertes AB
    ChemSusChem; 2016 Jul; 9(14):1880-8. PubMed ID: 27273466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on High-Value Utilization of Carbon Derived from Tobacco Waste in Supercapacitors.
    Huang Z; Qin C; Wang J; Cao L; Ma Z; Yuan Q; Lin Z; Zhang P
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors.
    Tan Z; Yang J; Liang Y; Zheng M; Hu H; Dong H; Liu Y; Xiao Y
    J Colloid Interface Sci; 2021 Mar; 585():778-786. PubMed ID: 33143851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-situ ZnO template preparation of coal tar pitch-based porous carbon-sheet microsphere for supercapacitor.
    Jiang Y; He Z; Du Y; Wan J; Liu Y; Ma F
    J Colloid Interface Sci; 2021 Nov; 602():721-731. PubMed ID: 34153711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.
    Wang R; Wang P; Yan X; Lang J; Peng C; Xue Q
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5800-6. PubMed ID: 23098209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rationally tuning ratio of micro- to meso-pores of biomass-derived ultrathin carbon sheets toward supercapacitors with high energy and high power density.
    Zhang Y; Wu C; Dai S; Liu L; Zhang H; Shen W; Sun W; Ming Li C
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):817-825. PubMed ID: 34425269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.
    Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC
    Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid one-step preparation of hierarchical porous carbon from chitosan-based hydrogel for high-rate supercapacitors: The effect of gelling agent concentration.
    Luo M; Wang X; Meng T; Yang P; Zhu Z; Min H; Chen M; Chen W; Zhou X
    Int J Biol Macromol; 2020 Mar; 146():453-461. PubMed ID: 31874271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous Carbon Materials Obtained by the Hydrothermal Carbonization of Orange Juice.
    Veltri F; Alessandro F; Scarcello A; Beneduci A; Arias Polanco M; Cid Perez D; Vacacela Gomez C; Tavolaro A; Giordano G; Caputi LS
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32244676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing specific capacitance in rice husk-derived activated carbon through phosphoric acid and potassium hydroxide activation order variations.
    Barakat NAM; Mahmoud MS; Moustafa HM
    Sci Rep; 2024 Jan; 14(1):1460. PubMed ID: 38233435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blotting Paper-Derived Activated Porous Carbon/Reduced Graphene Oxide Composite Electrodes for Supercapacitor Applications.
    Jiang Q; Liu D; Liu B; Zhou T; Zhou J
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31861201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production and characterization of bamboo-based activated carbon through single-step H
    Ismail IS; Rashidi NA; Yusup S
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12434-12440. PubMed ID: 34189693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Biomass-Derived Carbon Induced by Cellular Respiration in Yeast for Supercapacitor Applications.
    Lian YM; Ni M; Zhou L; Chen RJ; Yang W
    Chemistry; 2018 Dec; 24(68):18068-18074. PubMed ID: 30280431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.