These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 32143204)
21. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
22. Optimization of 3D printing and Ketabat F; Maris T; Duan X; Yazdanpanah Z; Kelly ME; Badea I; Chen X Front Bioeng Biotechnol; 2023; 11():1161804. PubMed ID: 37304145 [No Abstract] [Full Text] [Related]
23. Control of cell growth on 3D-printed cell culture platforms for tissue engineering. Tan Z; Liu T; Zhong J; Yang Y; Tan W J Biomed Mater Res A; 2017 Dec; 105(12):3281-3292. PubMed ID: 28865175 [TBL] [Abstract][Full Text] [Related]
24. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Chae S; Lee SS; Choi YJ; Hong DH; Gao G; Wang JH; Cho DW Biomaterials; 2021 Jan; 267():120466. PubMed ID: 33130320 [TBL] [Abstract][Full Text] [Related]
25. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Mekhileri NV; Lim KS; Brown GCJ; Mutreja I; Schon BS; Hooper GJ; Woodfield TBF Biofabrication; 2018 Jan; 10(2):024103. PubMed ID: 29199637 [TBL] [Abstract][Full Text] [Related]
26. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering. Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655 [TBL] [Abstract][Full Text] [Related]
27. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. Gupta D; Singh AK; Dravid A; Bellare J ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613 [TBL] [Abstract][Full Text] [Related]
28. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
29. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering. Yeo M; Lee JS; Chun W; Kim GH Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966 [TBL] [Abstract][Full Text] [Related]
30. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Fahimipour F; Dashtimoghadam E; Rasoulianboroujeni M; Yazdimamaghani M; Khoshroo K; Tahriri M; Yadegari A; Gonzalez JA; Vashaee D; Lobner DC; Jafarzadeh Kashi TS; Tayebi L Dent Mater; 2018 Feb; 34(2):209-220. PubMed ID: 29054688 [TBL] [Abstract][Full Text] [Related]
31. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Lee VK; Dai G Ann Biomed Eng; 2017 Jan; 45(1):115-131. PubMed ID: 27066784 [TBL] [Abstract][Full Text] [Related]
32. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Attalla R; Ling C; Selvaganapathy P Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949 [TBL] [Abstract][Full Text] [Related]
33. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo. Ngan CGY; O'Connell CD; Blanchard R; Boyd-Moss M; Williams RJ; Bourke J; Quigley A; McKelvie P; Kapsa RMI; Choong PFM Biomed Mater; 2019 Mar; 14(3):035007. PubMed ID: 30795002 [TBL] [Abstract][Full Text] [Related]
34. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
35. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Lewis PL; Yan M; Su J; Shah RN Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182 [TBL] [Abstract][Full Text] [Related]
36. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Lee JW; Choi YJ; Yong WJ; Pati F; Shim JH; Kang KS; Kang IH; Park J; Cho DW Biofabrication; 2016 Jan; 8(1):015007. PubMed ID: 26756962 [TBL] [Abstract][Full Text] [Related]
37. Lipid-Bilayer-Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. Zhou L; Wolfes AC; Li Y; Chan DCW; Ko H; Szele FG; Bayley H Adv Mater; 2020 Aug; 32(31):e2002183. PubMed ID: 32537827 [TBL] [Abstract][Full Text] [Related]
38. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953 [TBL] [Abstract][Full Text] [Related]
39. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity. Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117 [TBL] [Abstract][Full Text] [Related]
40. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells. Petrochenko PE; Torgersen J; Gruber P; Hicks LA; Zheng J; Kumar G; Narayan RJ; Goering PL; Liska R; Stampfl J; Ovsianikov A Adv Healthc Mater; 2015 Apr; 4(5):739-47. PubMed ID: 25522214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]