These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32143209)

  • 21. Tunable band gaps in graphene/GaN van der Waals heterostructures.
    Huang L; Yue Q; Kang J; Li Y; Li J
    J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals.
    Yang SJ; Jung JH; Lee E; Han E; Choi MY; Jung D; Choi S; Park JH; Oh D; Noh S; Kim KJ; Huang PY; Hwang CC; Kim CJ
    Nano Lett; 2022 Feb; 22(4):1518-1524. PubMed ID: 35119873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging Dual-Moiré Lattices in Twisted Bilayer Graphene Aligned on Hexagonal Boron Nitride Using Microwave Impedance Microscopy.
    Huang X; Chen L; Tang S; Jiang C; Chen C; Wang H; Shen ZX; Wang H; Cui YT
    Nano Lett; 2021 May; 21(10):4292-4298. PubMed ID: 33949872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stacking and registry effects in layered materials: the case of hexagonal boron nitride.
    Marom N; Bernstein J; Garel J; Tkatchenko A; Joselevich E; Kronik L; Hod O
    Phys Rev Lett; 2010 Jul; 105(4):046801. PubMed ID: 20867872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nature of Interlayer Binding and Stacking of sp-sp
    Shin H; Kim J; Lee H; Heinonen O; Benali A; Kwon Y
    J Chem Theory Comput; 2017 Nov; 13(11):5639-5646. PubMed ID: 28945968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved description of soft layered materials with van der Waals density functional theory.
    Graziano G; Klimeš J; Fernandez-Alonso F; Michaelides A
    J Phys Condens Matter; 2012 Oct; 24(42):424216. PubMed ID: 23032994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.
    Guo H; Liu Y; Xu Y; Meng N; Wang H; Hasan T; Wang X; Luo J; Yu B
    Nanotechnology; 2014 Sep; 25(35):355202. PubMed ID: 25116064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe
    Nayak PK; Horbatenko Y; Ahn S; Kim G; Lee JU; Ma KY; Jang AR; Lim H; Kim D; Ryu S; Cheong H; Park N; Shin HS
    ACS Nano; 2017 Apr; 11(4):4041-4050. PubMed ID: 28363013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures.
    He J; Kumar N; Bellus MZ; Chiu HY; He D; Wang Y; Zhao H
    Nat Commun; 2014 Nov; 5():5622. PubMed ID: 25421098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.
    Jobst J; van der Torren AJH; Krasovskii EE; Balgley J; Dean CR; Tromp RM; van der Molen SJ
    Nat Commun; 2016 Nov; 7():13621. PubMed ID: 27897180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Chen XK; Pang M; Chen T; Du D; Chen KQ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15517-15526. PubMed ID: 32153173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermally Induced Graphene Rotation on Hexagonal Boron Nitride.
    Wang D; Chen G; Li C; Cheng M; Yang W; Wu S; Xie G; Zhang J; Zhao J; Lu X; Chen P; Wang G; Meng J; Tang J; Yang R; He C; Liu D; Shi D; Watanabe K; Taniguchi T; Feng J; Zhang Y; Zhang G
    Phys Rev Lett; 2016 Mar; 116(12):126101. PubMed ID: 27058087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures.
    Kamalakar MV; Dankert A; Kelly PJ; Dash SP
    Sci Rep; 2016 Feb; 6():21168. PubMed ID: 26883717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab Initio Study of Graphene/hBN Van der Waals Heterostructures: Effect of Electric Field, Twist Angles and p-n Doping on the Electronic Properties.
    Brozzesi S; Attaccalite C; Buonocore F; Giorgi G; Palummo M; Pulci O
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.
    Lu N; Guo H; Wang L; Wu X; Zeng XC
    Nanoscale; 2014 May; 6(9):4566-71. PubMed ID: 24676364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of band gaps in graphene on hexagonal boron nitride.
    Jung J; DaSilva AM; MacDonald AH; Adam S
    Nat Commun; 2015 Feb; 6():6308. PubMed ID: 25695638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Two- to Three-Dimensional van der Waals Layered Structures of Boron Crystals: An Ab Initio Study.
    Li D; Tang Q; He J; Li B; Ding G; Feng C; Zhou H; Zhang G
    ACS Omega; 2019 May; 4(5):8015-8021. PubMed ID: 31459890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers.
    Mogulkoc A; Mogulkoc Y; Modarresi M; Alkan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28124-28134. PubMed ID: 30387488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure stability and high-temperature distortion resistance of trilayer complexes formed from graphenes and boron nitride nanosheets.
    Yuan J; Liew KM
    Phys Chem Chem Phys; 2014 Jan; 16(1):88-94. PubMed ID: 24220027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.