These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32143351)

  • 1. Systematic Investigations of Annealing and Functionalization of Carbon Nanotube Yarns.
    Scholz M; Hayashi Y; Eckert V; Khavrus V; Leonhardt A; Büchner B; Mertig M; Hampel S
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32143351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Properties Enhancement of Carbon Nanotube Yarns by Cyclic Loading.
    Weizman O; Mead J; Dodiuk H; Kenig S
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy.
    Pierlot AP; Woodhead AL; Church JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():598-603. PubMed ID: 24103230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films.
    Yang SB; Kong BS; Jung DH; Baek YK; Han CS; Oh SK; Jung HT
    Nanoscale; 2011 Apr; 3(4):1361-73. PubMed ID: 21359350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature effects on resistance of aligned multiwalled carbon nanotube films.
    Koratkar N; Modi A; Lass E; Ajayan P
    J Nanosci Nanotechnol; 2004 Sep; 4(7):744-8. PubMed ID: 15570956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical functionalization of carbon nanotubes.
    Sinnott SB
    J Nanosci Nanotechnol; 2002 Apr; 2(2):113-23. PubMed ID: 12908295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-Power-Factor Carbon Nanotubes and an Ingenious Strategy for Thermoelectric Performance Evaluation.
    Zhou W; Fan Q; Zhang Q; Li K; Cai L; Gu X; Yang F; Zhang N; Xiao Z; Chen H; Xiao S; Wang Y; Liu H; Zhou W; Xie S
    Small; 2016 Jul; 12(25):3407-14. PubMed ID: 27199099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation.
    Shikata R; Suzuki H; Hayashi Y; Hasegawa T; Shigeeda Y; Inoue H; Yajima W; Kametaka J; Maetani M; Tanaka Y; Nishikawa T; Maeda S; Hayashi Y; Hada M
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35196260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits.
    Hwang JY; Kim HS; Kim JH; Shin US; Lee SH
    Langmuir; 2015 Jul; 31(28):7844-51. PubMed ID: 26107468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical properties and applications of carbon nanotube structures.
    Bandaru PR
    J Nanosci Nanotechnol; 2007; 7(4-5):1239-67. PubMed ID: 17450889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes.
    Zhang L; Shi E; Ji C; Li Z; Li P; Shang Y; Li Y; Wei J; Wang K; Zhu H; Wu D; Cao A
    Nanoscale; 2012 Aug; 4(16):4954-9. PubMed ID: 22806611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical method for improving both the electrical conductivity and mechanical properties of carbon nanotube yarn via intramolecular cross-dehydrogenative coupling.
    Choi YM; Choo H; Yeo H; You NH; Lee DS; Ku BC; Kim HC; Bong PH; Jeong Y; Goh M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7726-30. PubMed ID: 23947825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-type thermoelectric performance of functionalized carbon nanotube-filled polymer composites.
    Freeman DD; Choi K; Yu C
    PLoS One; 2012; 7(11):e47822. PubMed ID: 23133605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets.
    Carretero-González J; Castillo-Martínez E; Dias-Lima M; Acik M; Rogers DM; Sovich J; Haines CS; Lepró X; Kozlov M; Zhakidov A; Chabal Y; Baughman RH
    Adv Mater; 2012 Nov; 24(42):5695-701. PubMed ID: 22911965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube and graphene multiple-thread yarns.
    Zhong X; Wang R; Yangyang W; Yali L
    Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.