These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32143447)

  • 1. An Origami Heat Radiation Fin for Use in a Stretchable Thermoelectric Generator.
    Akuto M; Iwase E
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Substrate Stretchability Using Origami-Like Folding Deformation for Flexible Thermoelectric Generator.
    Fukuie K; Iwata Y; Iwase E
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces.
    Yang Y; Hu H; Chen Z; Wang Z; Jiang L; Lu G; Li X; Chen R; Jin J; Kang H; Chen H; Lin S; Xiao S; Zhao H; Xiong R; Shi J; Zhou Q; Xu S; Chen Y
    Nano Lett; 2020 Jun; 20(6):4445-4453. PubMed ID: 32368921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origami-Type Flexible Thermoelectric Generator Fabricated by Self-Folding.
    Sato Y; Terashima S; Iwase E
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites.
    Zadan M; Malakooti MH; Majidi C
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17921-17928. PubMed ID: 32208638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable Thermoelectric Generators Metallized with Liquid Alloy.
    Jeong SH; Cruz FJ; Chen S; Gravier L; Liu J; Wu Z; Hjort K; Zhang SL; Zhang ZB
    ACS Appl Mater Interfaces; 2017 May; 9(18):15791-15797. PubMed ID: 28453282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cross-Plane Design for Wearable Thermoelectric Generators with High Stretchability and Output Performance.
    Yang J; Pu Y; Yu H; Ye DD; Liu X; Xin JH
    Small; 2023 Nov; 19(45):e2304529. PubMed ID: 37434332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics.
    Fan W; An Z; Liu F; Gao Z; Zhang M; Fu C; Zhu T; Liu Q; Zhao X
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206397. PubMed ID: 36799534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Thermoelectric Generators for Field Deployments.
    Kishore RA; Nozariasbmarz A; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability.
    Tao K; Yi H; Yang Y; Tang L; Yang Z; Wu J; Chang H; Yuan W
    Microsyst Nanoeng; 2020; 6():56. PubMed ID: 34567667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities.
    Ren W; Sun Y; Zhao D; Aili A; Zhang S; Shi C; Zhang J; Geng H; Zhang J; Zhang L; Xiao J; Yang R
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33568483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepwise Curing Induced All-Stretchable Thermoelectric Generator of High Power Density.
    Kim D; Kim ME; Kim H; Lee J; Lee J; Lee H; Lee D; Lee NE; Kang B
    Small; 2024 Oct; ():e2406662. PubMed ID: 39358965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable and Skin-Conformal Thermoelectric Generator with Highly Flexible and Plastically Bendable Silver Selenide Films.
    Mun Y; Park S; Kim Y; Park W; Bae EJ; Han M; Kang YH; Roh JW; Kim J; Jang KS
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):44841-44849. PubMed ID: 39160685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stretchable PU Ionogels with Self-Healing Capability for a Flexible Thermoelectric Generator.
    Xu J; Wang H; Du X; Cheng X; Du Z; Wang H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20427-20434. PubMed ID: 33882665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency Enhancement in Ocean Thermal Energy Conversion: A Comparative Study of Heat Exchanger Designs for Bi
    Chung YC; Wu CI
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable fabric generates electric power from woven thermoelectric fibers.
    Sun T; Zhou B; Zheng Q; Wang L; Jiang W; Snyder GJ
    Nat Commun; 2020 Jan; 11(1):572. PubMed ID: 31996675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Power Density Body Heat Energy Harvesting.
    Nozariasbmarz A; Kishore RA; Poudel B; Saparamadu U; Li W; Cruz R; Priya S
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40107-40113. PubMed ID: 31577411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compatibility optimization of a polyhedral-shape thermoelectric generator for automobile exhaust recovery considering backpressure effects.
    Quan R; Wang J; Li T
    Heliyon; 2022 Dec; 8(12):e12348. PubMed ID: 36590521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A honeycomb-like paper-based thermoelectric generator based on a Bi
    Zhao X; Han W; Jiang Y; Zhao C; Ji X; Kong F; Xu W; Zhang X
    Nanoscale; 2019 Oct; 11(38):17725-17735. PubMed ID: 31549120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.