These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32143450)
41. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Conlisk AT Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301 [TBL] [Abstract][Full Text] [Related]
42. Effective permeability of porous media containing branching channel networks. Ronayne MJ; Gorelick SM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026305. PubMed ID: 16605452 [TBL] [Abstract][Full Text] [Related]
43. Electroosmotic flow-switchable poly(dimethylsiloxane) microfluidic channel modified with cysteine based on gold nanoparticles. Wang W; Zhao L; Zhou F; Zhu JJ; Zhang JR Talanta; 2007 Sep; 73(3):534-9. PubMed ID: 19073067 [TBL] [Abstract][Full Text] [Related]
44. Simple and Rapid Immobilization of Coating Polymers on Poly(dimethyl siloxane)-glass Hybrid Microchips by a Vacuum-drying Method. Kitagawa F; Nakagawara S; Nukatsuka I; Hori Y; Sueyoshi K; Otsuka K Anal Sci; 2015; 31(11):1171-5. PubMed ID: 26561262 [TBL] [Abstract][Full Text] [Related]
45. A split microchannel design and analytical model to compensate for electroosmotic instabilities in micro-separations. Monahan J; Fosser KA; Gewirth AA; Nuzzo RG Lab Chip; 2002 May; 2(2):81-7. PubMed ID: 15100839 [TBL] [Abstract][Full Text] [Related]
47. Characterization of electroosmotic flow through nanoporous self-assembled arrays. Bell K; Gomes M; Nazemifard N Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193 [TBL] [Abstract][Full Text] [Related]
48. Modeling of nucleic acid adsorption on 3D prisms in microchannels. Hu Y; Li D Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424 [TBL] [Abstract][Full Text] [Related]
49. Interfacial Electric Effects on a Non-Isothermal Electroosmotic Flow in a Microcapillary Tube Filled by Two Immiscible Fluids. Matías A; Méndez F; Bautista O Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400424 [TBL] [Abstract][Full Text] [Related]
50. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
51. Numerical simulation of bubble transport in a bifurcating microchannel: a preliminary study. Poornima J; Vengadesan S J Biomech Eng; 2012 Aug; 134(8):081005. PubMed ID: 22938358 [TBL] [Abstract][Full Text] [Related]
52. Numerical Analysis of Microchannels Designed for Heat Sinks. McCormack M; Fang F; Zhang J Nanomanuf Metrol; 2022; 5(4):354-369. PubMed ID: 36568336 [TBL] [Abstract][Full Text] [Related]
53. Microfabrication of a tapered channel for isoelectric focusing with thermally generated pH gradient. Huang T; Pawliszyn J Electrophoresis; 2002 Oct; 23(20):3504-10. PubMed ID: 12412118 [TBL] [Abstract][Full Text] [Related]
54. The Effect of Geometric Parameters on Flow and Heat Transfer Characteristics of a Double-Layer Microchannel Heat Sink for High-Power Diode Laser. Gao Y; Wang J; Cao M; Zang L; Liu H; Yuen MMF; Bai X; Wang Y Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557370 [TBL] [Abstract][Full Text] [Related]
55. Mass transfer and flow in electrically charged micro- and nanochannels. Conlisk AT; McFerran J; Zheng Z; Hansford D Anal Chem; 2002 May; 74(9):2139-50. PubMed ID: 12033318 [TBL] [Abstract][Full Text] [Related]
56. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory. Datta S; Ghosal S; Patankar NA Electrophoresis; 2006 Feb; 27(3):611-9. PubMed ID: 16456890 [TBL] [Abstract][Full Text] [Related]
57. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Kawamata T; Yamada M; Yasuda M; Seki M Electrophoresis; 2008 Apr; 29(7):1423-30. PubMed ID: 18384021 [TBL] [Abstract][Full Text] [Related]
58. Impact of Water-Depletion Layer on Transport in Hydrophobic Nanochannels. He Y; Tsutsui M; Miao XS; Taniguchi M Anal Chem; 2015 Dec; 87(24):12040-50. PubMed ID: 26551303 [TBL] [Abstract][Full Text] [Related]
59. Mass transfer in rectangular chromatographic channels. Poppe H J Chromatogr A; 2002 Mar; 948(1-2):3-17. PubMed ID: 12831178 [TBL] [Abstract][Full Text] [Related]
60. Architecture of optimal transport networks. Durand M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016116. PubMed ID: 16486225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]