These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 32143485)
1. Modulation of the Pol II CTD Phosphorylation Code by Rac1 and Cdc42 Small GTPases in Cultured Human Cancer Cells and Its Implication for Developing a Synthetic-Lethal Cancer Therapy. Zhang B; Zhong X; Sauane M; Zhao Y; Zheng ZL Cells; 2020 Mar; 9(3):. PubMed ID: 32143485 [TBL] [Abstract][Full Text] [Related]
2. C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Zhang B; Yang G; Chen Y; Zhao Y; Gao P; Liu B; Wang H; Zheng ZL Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8197-E8206. PubMed ID: 27911772 [TBL] [Abstract][Full Text] [Related]
3. Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited. Zheng ZL Transcription; 2017 Aug; 8(4):268-274. PubMed ID: 28548879 [TBL] [Abstract][Full Text] [Related]
4. The role of Rho GTPases' substrates Rac and Cdc42 in osteoclastogenesis and relevant natural medicinal products study. Liu Y; Dou Y; Yan L; Yang X; He B; Kong L; Smith W Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32578854 [TBL] [Abstract][Full Text] [Related]
5. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation. Debidda M; Wang L; Zang H; Poli V; Zheng Y J Biol Chem; 2005 Apr; 280(17):17275-85. PubMed ID: 15705584 [TBL] [Abstract][Full Text] [Related]
6. The roles of Cdc42 and Rac1 in the formation of plasma membrane protrusions in cancer epithelial HeLa cells. Ruiz-Lafuente N; Minguela A; Muro M; Parrado A Mol Biol Rep; 2021 May; 48(5):4285-4294. PubMed ID: 34110575 [TBL] [Abstract][Full Text] [Related]
7. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Egloff S; Zaborowska J; Laitem C; Kiss T; Murphy S Mol Cell; 2012 Jan; 45(1):111-22. PubMed ID: 22137580 [TBL] [Abstract][Full Text] [Related]
8. RHOG Activates RAC1 through CDC42 Leading to Tube Formation in Vascular Endothelial Cells. El Atat O; Fakih A; El-Sibai M Cells; 2019 Feb; 8(2):. PubMed ID: 30781697 [TBL] [Abstract][Full Text] [Related]
9. Human RNA polymerase II-associated protein 2 (RPAP2) interacts directly with the RNA polymerase II subunit Rpb6 and participates in pre-mRNA 3'-end formation. Wani S; Hirose Y; Ohkuma Y Drug Discov Ther; 2014 Dec; 8(6):255-61. PubMed ID: 25639305 [TBL] [Abstract][Full Text] [Related]
10. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Glover-Cutter K; Larochelle S; Erickson B; Zhang C; Shokat K; Fisher RP; Bentley DL Mol Cell Biol; 2009 Oct; 29(20):5455-64. PubMed ID: 19667075 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells. Frantz C; Coppola T; Regazzi R Exp Cell Res; 2002 Feb; 273(2):119-26. PubMed ID: 11822867 [TBL] [Abstract][Full Text] [Related]
12. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity. Schulz J; Franke K; Frick M; Schumacher S J Neurochem; 2016 Oct; 139(1):26-39. PubMed ID: 27412363 [TBL] [Abstract][Full Text] [Related]
13. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression. Croisé P; Houy S; Gand M; Lanoix J; Calco V; Tóth P; Brunaud L; Lomazzi S; Paramithiotis E; Chelsky D; Ory S; Gasman S Endocr Relat Cancer; 2016 Apr; 23(4):281-93. PubMed ID: 26911374 [TBL] [Abstract][Full Text] [Related]
14. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. Ge J; Burnier L; Adamopoulou M; Kwa MQ; Schaks M; Rottner K; Brakebusch C J Biol Chem; 2018 Jun; 293(24):9358-9369. PubMed ID: 29700112 [TBL] [Abstract][Full Text] [Related]
15. Neuroglobin Plays a Protective Role in Arsenite-Induced Cytotoxicity by Inhibition of Cdc42 and Rac1GTPases in Rat Cerebellar Granule Neurons. Liu X; Gao Y; An Y; Fu X; Li Y; Sun D; Wang J Cell Physiol Biochem; 2015; 36(4):1613-27. PubMed ID: 26160017 [TBL] [Abstract][Full Text] [Related]
16. Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro. Schlegel N; Meir M; Spindler V; Germer CT; Waschke J J Cell Physiol; 2011 May; 226(5):1196-203. PubMed ID: 20945370 [TBL] [Abstract][Full Text] [Related]
17. An encephalitozoon cuniculi ortholog of the RNA polymerase II carboxyl-terminal domain (CTD) serine phosphatase Fcp1. Hausmann S; Schwer B; Shuman S Biochemistry; 2004 Jun; 43(22):7111-20. PubMed ID: 15170348 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2. Ozdemir ES; Jang H; Gursoy A; Keskin O; Li Z; Sacks DB; Nussinov R J Biol Chem; 2018 Mar; 293(10):3685-3699. PubMed ID: 29358323 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator. Grohmanova K; Schlaepfer D; Hess D; Gutierrez P; Beck M; Kroschewski R J Biol Chem; 2004 Nov; 279(47):48495-504. PubMed ID: 15355962 [TBL] [Abstract][Full Text] [Related]
20. Heterotrimeric G protein betagamma subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42. Ueda H; Nagae R; Kozawa M; Morishita R; Kimura S; Nagase T; Ohara O; Yoshida S; Asano T J Biol Chem; 2008 Jan; 283(4):1946-53. PubMed ID: 18045877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]